

Rejets de déchets solides dans les milieux aquatiques - Étude des flux sur le territoire de la ville de Genève

Etude réalisée dans le cadre du Plan cantonal de gestion des déchets 2020-2025 (mesure DU4)

17 novembre 2023

DROIT D'AUTEUR

Publié par République et canton de Genève

Département du territoire Office cantonal de l'eau

Office cantonal de l'environnement

Document réalisé par EA – Earth Action

Chemin des Vignes d'Argent 7

1004 Lausanne

3E Ingénieurs Sàrl Rue Versonney 15 bis

1207 Genève

Auteurs Dr Paola Paruta

Dr Julien Boucher* Noémie Voirin Paolo Mazzatorta Sakshi Sharda

3E Ingénieurs Sàrl, David Simonnin et Maxime Capponi

*Auteur-ressource julien.boucher@e-a.earth

Relecteurs externes 3E Ingénieurs Sàrl, David Simonnin et Maxime Capponi

Designé parMartha Perea Palacios, <u>marpereapalacios@orotaller.com</u>

Crédits des images © Martial Trezzini,

Marc Newberry sur Unsplash:

https://unsplash.com/fr/photos/9vcEn3BJyy8

O. GLOSSAIRE

Réseau séparatif

Il s'agit du système d'assainissement collectant les eaux usées domestiques et les eaux pluviales de manière distincte. On distingue deux réseaux : le réseau d'eaux usées conduit à des stations d'épuration pour y traiter les eaux, tandis que le réseau d'eaux pluviales renvoie l'eau directement dans les lacs et rivières.

Réseau unitaire

Il s'agit d'un système d'assainissement collectant à la fois les eaux usées et les eaux pluviales dans le même canal.

Point de rejet

Le point de sortie du réseau correspond à l'endroit où les eaux sont évacuées du système de collecte et rejetées dans un milieu récepteur, tel qu'un cours d'eau ou un lac.

Exutoire

Ouverture ou conduit permettant de collecter et d'évacuer des eaux usées, l'eau de pluie ou l'eau d'un lac.

« Littering »

Le littering correspond au dépôt ou l'abandon de déchets urbains en dehors des infrastructures prévues à cet effet.

Fuite

Sauf indication contraire, il s'agit de la quantité de déchets libérés dans l'environnement (terre et eau). Sans autre indication, cela comprend à la fois les micro et les macrodéchets.

Microdéchets

Les microdéchets font référence à de petits fragments de déchets, souvent de l'ordre de quelques millimètres, qui peuvent provenir de diverses sources telles que la dégradation de plastiques, de textiles ou d'autres matériaux.

De même, le terme "microplastique" désigne une particule d'une taille inférieure à 5 mm, et il en existe deux types: les microplastiques primaires et les microplastiques secondaires. Cette étude se concentre uniquement sur les microplastiques primaires, qui sont des plastiques directement libérés dans l'environnement sous forme de petites particules.

Macrodéchets

Les macrodéchets font référence aux déchets issus de l'activité humaine, de taille plus ou moins importante, généralement visibles à l'œil nu. Dans ce rapport, sont considérés comme macrodéchets les emballages, les bouteilles, les masques, les canettes ou les mégots.

De même, un macroplastique a souvent une taille supérieure à 5 mm.

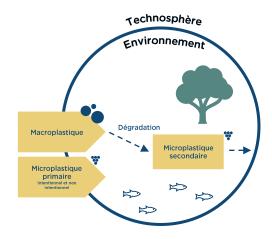


Figure 1. Illustration des différents types de plastiques.

TABLE DES MATIÈRES

O. GLOSSAIRE	3
1. INTRODUCTION	5
1.1. Contexte et objectifs1.2. Problématique des déchets sauvages	6 7
2. RÉSUMÉ EXÉCUTIF	9
2.1. Messages clés2.2. Principaux enseignements	10 11
3. RÉSULTATS DÉTAILLÉS	12
 3.1. Sources et volume du littering 3.2. Distribution géographique du littering 3.3. Quantité de déchets finissant dans le Léman et les 	13 13 14
rivières 3.4. Solutions pour limiter efficacement les fuites	15
4. ANNEXES	18
 4.1. Sources et volume du littering 4.2. Distribution géographique du littering 4.3. Quantité de déchets finissant dans le Léman et les rivières 	19 27 31
4.4. Solutions pour limiter efficacement les fuites	38
5. BIBLIOGRAPHIE	53

1. INTRODUCTION

- 1.1. Contexte et objectifs
- 1.2. Problématique des déchets sauvages

1.1. Contexte et objectifs

Le canton de Genève aspire à dresser un état des lieux de la pollution émise dans la région, en mettant en évidence les principaux points de rejet des déchets sauvages et en identifiant des mesures applicables pour réduire ces flux de polluants.

Cette étude vise à quantifier la pollution due au littering, prenant en compte tous les types de déchets liés à cette pratique. Elle se décompose en quatre phases : identification des sources et du volume du littering, analyse de la distribution du littering, évaluation des fuites dans le milieu et proposition de solutions.

L'analyse est menée au niveau de la ville de Genève, en identifiant les points de rejet du réseau séparatif responsables du plus grand taux de fuite des déchets. L'année de référence pour cette étude est 2021, utilisant les données de cette année pour la modélisation du littering.

Ce rapport offre une **évaluation** partielle de la contribution des macro et microdéchets sauvages dans la ville de Genève, dans le but d'améliorer la compréhension et la sensibilisation à cette problématique. encourageant ainsi la mise en place d'un système de gestion des déchets plus efficace sans compromettre la santé de notre environnement. En comblant une lacune dans les connaissances, il apporte un éclairage précieux permettant à la ville et au Canton de Genève de mieux orienter leurs actions concernant les fuites dans l'environnement.

Les solutions envisagées devraient être développées, mises en œuvre et surveillées à partir des analyses récoltées sur le terrain.

1.2. Problématique des déchets sauvages

Au sein d'une société moderne en expansion démographique constante, le phénomène du littering, défini comme le dépôt ou l'abandon de déchets urbains en dehors des infrastructures prévues à cet effet, suscite une préoccupation grandissante.

À Genève, chaque année, ce ne sont pas moins de 1'086 tonnes de macro et microdéchets qui sont laissées dans la nature. Les principales sources sont les mégots de cigarettes, les emballages papier et les emballages plastiques.

Les mégots représentent à eux seuls 47 % des déchets sauvages, un fumeur jetant dans la nature en moyenne 4 mégots par jour.

Résultats actuels

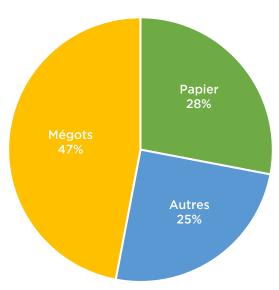


Figure 2. Origine des déchets (% en volume basé à la fois sur la quantité de déchets sauvages en tonnes/an et sur le volume de déchets en m³/an) : nous identifions le papier et les mégots comme deux des sources principales de déchets sauvage en ville de Genève, en accord avec l'analyse de Cortexia.

En ce qui concerne le plastique, en Suisse, une étude a démontré que près de 14'000 tonnes de déchets plastiques terminent dans l'environnement chaque année (EBP. 2020), dont environ 900 tonnes se retrouvent dans les lacs et rivières (Kawecki et al., 2019). Les sources de ces fuites de plastique sont diverses, résultant principalement de deux mécanismes : la mauvaise gestion des déchets, responsable des macroplastiques échappés (Jambeck et al., 2015), et la dissémination de microplastiques primaires (Boucher & Friot, 2017). issus notamment de processus d'abrasion ou de déversements volontaires ou involontaires.

Les répercussions de cette contamination sur les écosystèmes et la santé humaine sont encore l'objet de débats et recherches et suscitent de vives préoccupations.

La ville et le canton de Genève ont déjà déployé une série de mesures pour contrer la pollution plastique et le littering en général. Par exemple, une campagne anti-mégots initiée en 2018 a permis de collecter une quantité notable de ces déchets tout en sensibilisant la population à cette problématique croissante.

Toutefois, il est impératif de disposer de données précises concernant les origines et l'ampleur du littering, ainsi que sur sa distribution géographique et les fuites environnementales qui en résultent, afin de concevoir des solutions précises et efficientes

Ce rapport vise à combler le manque de données sur la pollution due au littering en fournissant des estimations sur les sources, le volume et les fuites dans l'environnement et les solutions à apporter pour le cas de la ville de Genève.

Plus spécifiquement, des réponses sont attendues pour les 4 questions suivantes :

- **1.** Quelles sont les **sources** et les volumes de littering ?
- **2.** Quelle est la distribution géographique de ce littering ?
- **3.** Quelle quantité de déchets fuite dans le Léman et les rivières ?
- **4.** Quelles sont les **solutions** pour limiter efficacement ces fuites ?

Ce rapport comble donc une lacune dans les connaissances et données disponibles et fournit de nouveaux éléments importants pour mieux définir les priorités des actions à entreprendre concernant les fuites dans l'environnement.

2. RÉSUMÉ EXÉCUTIF

- 2.1. Messages clés
- 2.2. Principaux enseignements

2.1. Messages clés

1'086 tonnes de macro et microdéchets sont abandonnées en ville de Genève chaque année.

Les principales zones de distribution géographique du littering se trouvent aux **abords des routes et chaussées du centre-ville de Genève**.

Les emballages papier (348 t/an), les emballages plastique (278 t/an) et les mégots (210 t/an) sont les 3 principales sources de macrodéchets sauvages en ville de Genève.

Même si la plupart des mégots et des emballages sont collectés, pas moins de **3.4 t de mégots et 7.1 t d'emballages (plastique, papier, alu et verre)** partent directement **dans les rivières**, respectivement 19.2 t et 17.1 t fuient par les points de rejets du réseau séparatif.

Environ 70 % des fuites se concentrent dans **quatre principaux exutoires**, offrant ainsi des perspectives pour des solutions préventives. Toutefois, une validation sur le terrain est indispensable pour confirmer le modèle.

La mise en place de mesures préventives doit être maintenue. Toutefois **des solutions curatives pourraient limiter les rejets dans le milieu naturel.** Il s'agit de solutions telles que des filtres, des filets et des cyclones, ainsi que des pratiques de gestion comme le nettoyage plus fréquent des sacs de route, à mettre en œuvre principalement sur le réseau des eaux claires et aux exutoires.

2.2 Principaux enseignements

La contribution totale du littering aux fuites de micro et macrodéchets en ville de Genève est de 1'086 tonnes par an.

Les mégots, les emballages papiers et les emballages plastiques sont les trois sources principales de littering pour un total de 836 tonnes.

Les mégots sont les déchets plastiques les plus abandonnés dans l'environnement. Un fumeur jetant par terre en moyenne environ quatre mégots de cigarette par jour.

L'analyse est en accord avec les données de terrain de Cortexia qui estime que les mégots et les emballages papiers sont les deux principales sources de déchets (par nombre de pièces), et qu'entre 146 et 365 tonnes de mégots sont jetés par terre chaque année.

La suite de l'analyse s'est concentrée sur les sources principales de pollution : mégots et emballages (plastique, papier, alu et verre) L'analyse des données sur la distribution spatiale du littering avant ramassage et transport a permis de démontrer que la plupart des mégots sont abandonnés sur le lieu de travail (50.9%).

Concernant les fuites dans le milieu, la majorité des déchets sauvages sont capturés par les balayeuses et par le système de traitement des eaux usées. Les fuites principales dans l'eau du lac et les rivières sont liées au réseau séparatif et passent par les points de rejets des eaux pluviales.

Il est désormais nécessaire d'implémenter des solutions test et de les monitorer (filets à 3 points de rejet de dimensions intermédiaires et prévention du littering des mégots). Le but étant d'élargir ces mesures à tout le canton.

Il est aussi nécessaire de mieux appréhender les variations temporelles (orages, poubelles qui débordent), afin d'augmenter l'efficacité des mesures proposées.

3. RÉSULTATS DÉTAILLÉS

- 3.1. Sources et volume du littering
- 3.2. Distribution géographique du littering
- 3.3. Quantité de déchets finissant dans le Léman et les rivières
- 3.4. Solutions pour limiter efficacement les fuites

3.1. Sources et volume du littering

Cette recherche vise à identifier les sources de pollution dans la ville de Genève. Les emballages papier, les emballages plastiques et les mégots constituent les trois principales sources de macrodéchets sauvages dans la ville. Les mégots sont les déchets les plus fréquemment retrouvés dans l'environnement.

Ces conclusions concordent avec les données de Cortexia, qui estime que les mégots et les emballages papier sont les deux principales sources de déchets, en termes de nombre d'unités. (Service Voirie – ville propre, 2023). Entre 146 et 365 tonnes de mégots sont jetées par terre chaque année (ville de Genève, ASL, 2018).

La suite de l'analyse se concentre sur les principales sources de pollution : les mégots et les emballages (plastique, papier, alu et verre).

3.2. Distribution géographique du littering

L'analyse a permis d'obtenir des données sur la distribution spatiale du littering des mégots (Figure 5) et des emballages (Figure 6) avant ramassage et transport.

La plupart des jets de mégots par terre ont lieu sur le lieu de travail (50.9%), tandis que la plupart des emballages abandonnés par terre sont effectués par les piétons en marchant (42.9%).

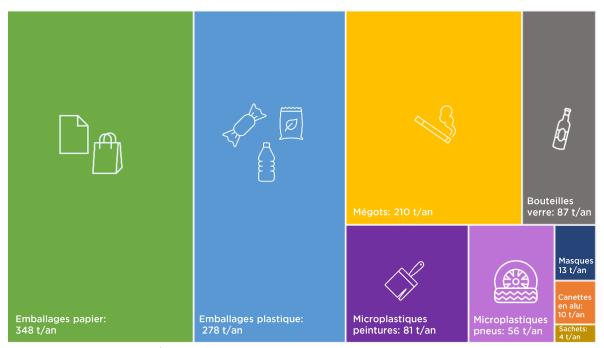


Figure 4. Quantité de littering (t/an). Cette représentation graphique met en évidence les diverses sources de déchets, ainsi que leurs volumes respectifs pour la ville de Genève. Les données indiquent que chaque année, 348 tonnes d'emballages papier, 278 tonnes d'emballages plastique, 210 tonnes de mégots, 87 tonnes de bouteilles en verre, 81 tonnes de microplastiques issus de la peinture, et 56 tonnes de microplastiques provenant des pneus terminent dans l'environnement.

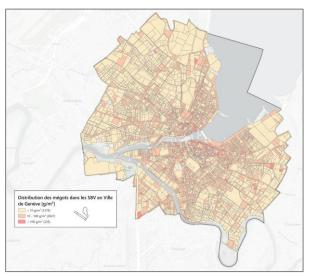


Figure 5. Distribution géographique du littering des mégots (g/m²).

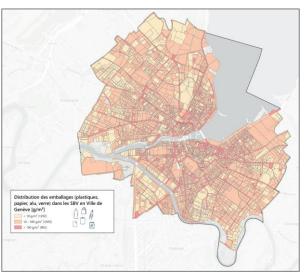
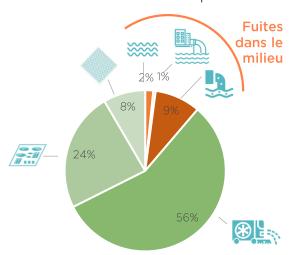



Figure 6. Distribution géographique du littering d'emballages plastiques, papier, alu et verre (g/m^2) .

3.3. Quantité de déchets finissant dans le Léman et les rivières

En ce qui concerne les mégots, 2% fuient directement dans le lac et les rivières et 9% passent par les points de rejets du réseau séparatif. Cela correspond respectivement à 3.4 tonnes et 19.2 tonnes par an.

- Fuites directes dans lacs et rivières
- Fuites indirectes déversoirs d'orage réseau unitaire
- Fuites indirectes point de rejet réseau séparatif
- Collectés par balayeuse
- Collectés par traitement des eaux usées (réseau unitaire)
- Collectés par sacs de route

Figure 7. Collecte et fuites des mégots dans le milieu.

Figure 8. Zones de fuites directes des mégots dans le lac et les rivières (2%), soit 3.4 tonnes par an.

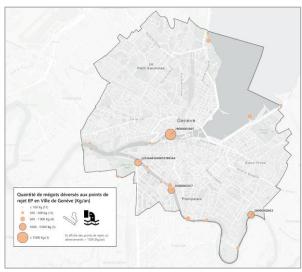
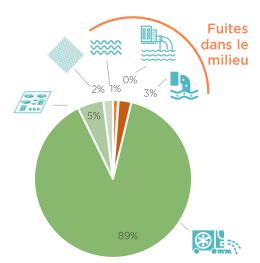



Figure 9. Zones de fuites des mégots par les points de rejets du réseau séparatif (9%), soit 19.2 tonnes par an.

En ce qui concerne les emballages, 1% finit directement dans le lac et les rivières et 3% passent par les points de rejets du réseau séparatif. Cela représente respectivement 7.1 tonnes et 17.7 tonnes par an.

- Fuites directes dans lacs et rivières
- Fuites indirectes déversoirs d'orage réseau unitaire
- Fuites indirectes point de rejet réseau séparatif
- Collectés par balayeuse
- Collectés par traitement des eaux usées (réseau unitaire)
- Collectés par sacs de route

Figure 10. Collecte et fuites des emballages dans le milieu .

La majorité des déchets sauvages sont capturés par les balayeuses et par le système de traitement des eaux usées. Les principales fuites dans le lac et les rivières sont associées au réseau séparatif et transitent par les points de rejets des eaux pluviales.

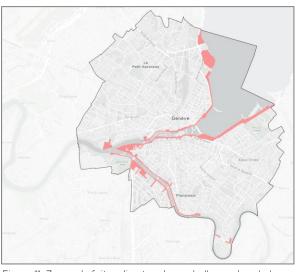
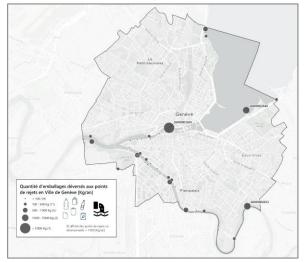
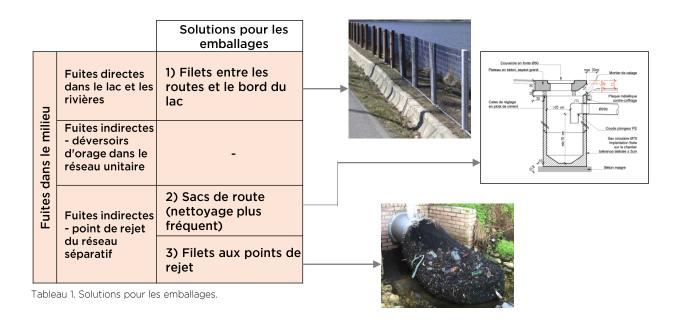
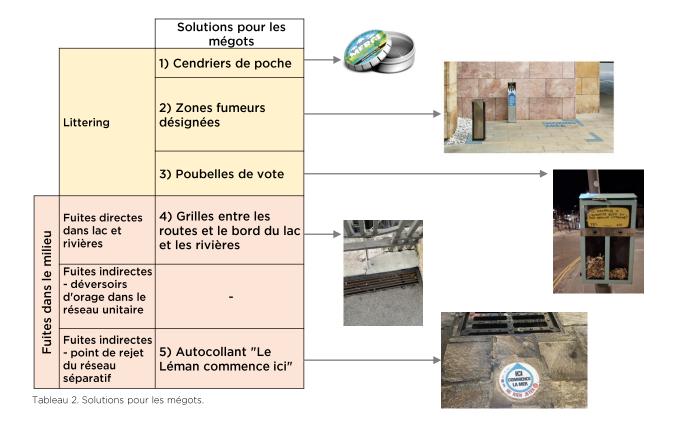


Figure 11. Zones de fuites directes des emballages dans le lac et les rivières (1%), soit 7.1 tonnes par an.


Figure 12. Zones de fuites des emballages par les points de rejets du réseau séparatif (3%), soit 17.7 tonnes par an.


3.4. Solutions pour limiter efficacement les fuites

Plusieurs solutions ont été modélisées pour lutter contre la pollution plastique à Genève. En complément des 8 solutions proposées dans le rapport initial, nous suggérons 12 nouvelles solutions issues d'une analyse de littérature.

Dans les pages suivantes, nous énumérons les solutions selon le type de déchets (mégots ou emballages), ainsi que le type de fuites dans le milieu.

Si les mesures citées étaient mises en place, elles pourraient réduire de manière significative les fuites de déchets dans l'environnement. La mesure la plus efficace, soit la mise en place de filets aux points de rejet, entraînerait une réduction de 21% des fuites de déchets, tandis que la combinaison de l'ensemble des mesures conduirait à une réduction de 44% des fuites dans l'environnement.

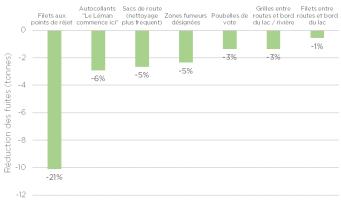


Figure 13. Estimation de la réduction potentielle des fuites.

4. Annexes

- 4.1. Sources et volume du littering
- 4.2. Distribution géographique du littering
- 4.3. Quantité de déchets finissant dans le Léman et les rivières
- 4.4. Solutions pour limiter efficacement les fuites

4.1. SOURCES ET VOLUME DU LITTERING

- 4.1.1. Sources de pollution considérées
- 4.1.2. Méthodologie utilisée pour déterminer le littering approche générale
- 4.1.3. Table produits priorisation des sources de pollution
- 4.1.4. Comparaison avec les données de terrain
- 4.1.5. Méthodologie utilisée
- 4.1.6. Messages clés

4.1.1. SOURCES DE POLLUTION CONSIDÉRÉES

L'étude a considéré les sources de pollution suivantes :

- Plastiques
- Bouteilles en verre
- Mégots
- Peintures
- Cannettes alu
- Masques

- Sacs à déjection canine
- Emballages papier
- Poussières de pneus
- Textiles

4.1.2. MÉTHODOLOGIE UTILISÉE POUR DÉTERMINER LE LITTERING - APPROCHE GÉNÉRALE

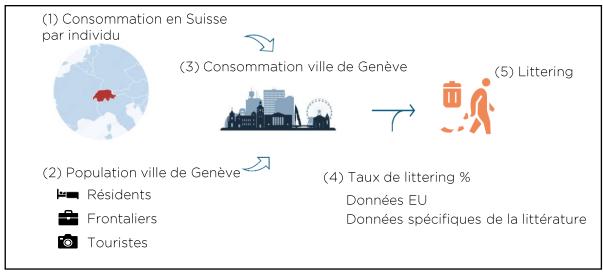


Figure 14. Méthodologie pour déterminer le littering.

4.1.3. TABLE PRODUITS - PRIORISATION DES SOURCES DE POLLUTION

	Quantité	Impact potentiel							
Produits	Quantité de littering (tonnes/an)	Chimique	Probabilité d'ingestion dans l'eau (taille et fragments)	Enchevêtrement	Mobilité	Visibilité par le grand public	Données à disposition	Actions curatives possibles	Fuites dans les cours d'eau
Macrodéchets									
Emballages papier	348	faible	moyen	faible	faible	oui	oui	oui	oui
Tot emballages plastique	279								
Mégots	209	fort	moyen/fort	faible	fort	oui	oui	peut-être	oui
Emballages plastique flexible	87	moyen	faible	moyen	moyen/fort	oui	oui	oui	oui
Bouteilles verre	87	faible	moyen	faible	faible	oui	oui	oui	oui
Bouteilles plastique PET	67	moyen	faible	faible	fort	oui	oui	oui	oui
Emballages alimentaires plastique rigide (excl. EPS)	62.5	moyen	faible	faible	faible	oui	oui	oui	oui
Emballages non-alimentaires plastique rigide	33	moyen	faible	faible	faible	oui	oui	oui	oui
Emballages plusieurs couches de plastique	14	moyen	faible	faible	moyen/fort	oui	oui	oui	oui
Bouteilles plastique autres	13	moyen	faible	faible	moyen	oui	oui	oui	oui
Canettes en alu	10	?	faible	faible	fort	oui	oui	oui	oui
Emballages EPS pour l'alimentation	1.3	moyen	fort	faible	fort	oui	oui	oui	oui
Sachets à excréments pour chien	4	fort	faible	moyen	faible	oui	peut-être	oui	oui
Masques	13	faible	faible	moyen	moyen	oui	oui	oui	oui
Préservatifs			faible	faible	faible	oui	peut-être	oui	oui
Journaux		faible	moyen	faible	faible	oui	peut-être	-	non
Produits sanitaires		fort	moyen/faible	faible		non	non	-	non
Cotons-tiges		faible	faible	faible		non	non	-	non
Filets de pêche		moyen	faible	fort		non	peut-être	non	oui
Papier toilette		fort	moyen	faible	moyen	oui	non	oui	oui
Microdéchets	Quantité dans l'environnement (tonnes/an)								
Poussières pneus	56				fort		oui	peut-être	oui
Microplastiques peinture bateaux	13.6		fort	faible	fort	non	oui	peut-être	oui
Microplastiques peinture bâtiments	67								
Textiles	-	moyen	fort	faible	fort	non	oui	oui	oui

Tableau 4. Table produits - priorisation des sources de pollution.

Quantité de littering (tonnes/an)

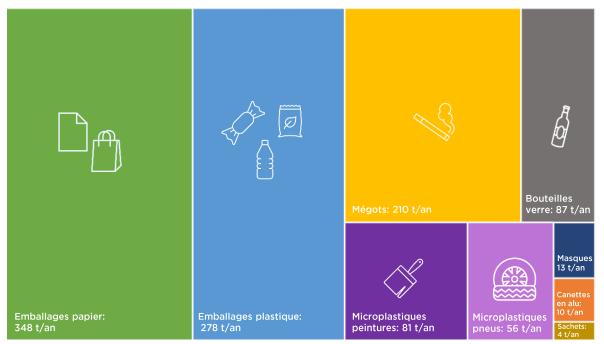


Figure 15. Quantité de littering (t/an).

Les emballages papier, les emballages plastique et les mégots sont les 3 principales sources de macrodéchets sauvages en ville de Genève.

4.1.4. COMPARAISON AVEC LES DONNÉES DE TERRAIN

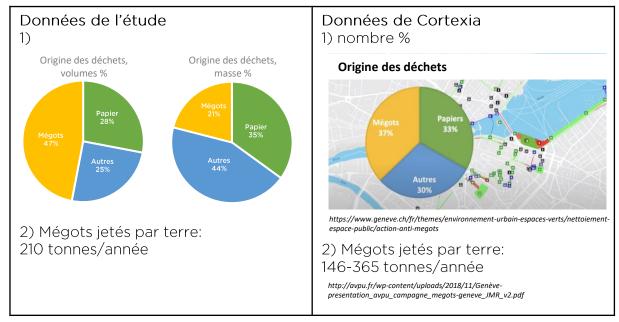


Figure 16. Comparaison avec les données de terrain.

Nous identifions le papier (348 tonnes/an) et les mégots (210 tonnes/an) comme deux des principales sources de déchets sauvages, en accord avec l'analyse de Cortexia.

4.1.5. MÉTHODOLOGIE UTILISÉE

A. MÉGOTS

		Valeur	Unité	Source
Nombre de cigarettes j	etées en ville de Genève	350	Mille unités/jour	А
Cigarettes vendues en Suisse (2015)		11 900	millions d'unité/an	С
Cigarettes fumées par résident en ville de Genève		281	millions d'unité/an	calc
Cigarettes fumées par résident		4	unités/jour	calc
Cigarettes fumées par f	umeur	12 - 15	unités/jour	C, calc
Cigarettes fumées par touristes et frontaliers		81	millions/an	calc, D
Cigarettes fumées en ville de Genève		362	millions/an	calc
Poids d'un mégot de ci	garette	2	g	E
Déchets de mégots en	ville de Genève	724	tonnes/an	calc
Nombre de cigarettes f Genève	umées par jour en ville de	991	mille unités/jour	calc
	Taux de littering	35%		calc, A, D
	Taux de littering	29%		F
	Littering (Cortexia)	256	tonnes/an	A, E
	Littering (top-down)	210	tonnes/an	C,D,E,F

Tableau 5. Méthodologie utilisée pour les mégots.

A) Ville de Geneve, ASL (2018). Campagne - STOP MEGOTS - contre les megots au sol en ville de Geneve

B) Communaute îndustrie suisse de la cigarette (2006). Consommation tabac en suisse

C) Jakob et al., 2017. Swiss medical weekly

D) Shiffman, 2006. Smoking patterns and dependence: Contrasting chippers and heavy smokers

E) https://www.worldnoashtray.com/en/cigarette-butt-littering-information/

F) ICF, Eunomia, European Commission - DG-Env. 2018. Assessment of measures to reduce marine litter from single use plastics.

B. PLASTIQUES

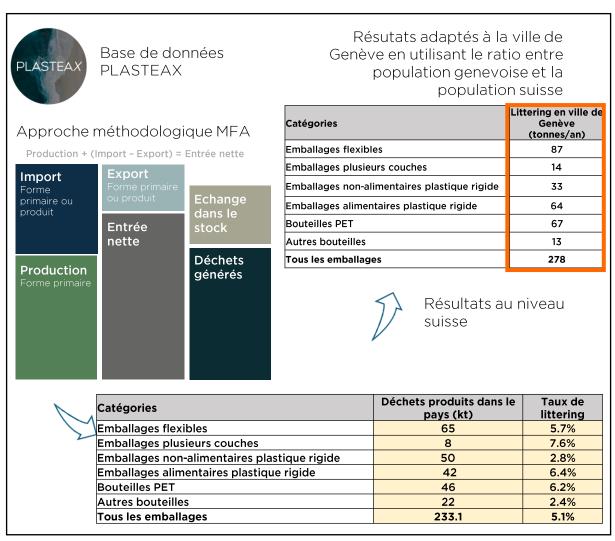


Figure 17. Méthodologie utilisée pour le plastique.

Comparaison avec statistiques déchets de la ville de Genève

La quantité de bouteilles PET mises sur le marché à Genève est calculée en utilisant les données de la ville de Genève, représentant 50% de la quantité estimée à partir des données suisses.

Bouteilles PET	Valeur	Unité	Source
Collectées pour recyclage en ville de Genève	400	tonnes/an	Α
Taux de recyclage national	79%		PLASTEAX
Bouteilles PET sur le marché en ville de Genève	507	tonnes/an	calc
Bouteilles PET sur le marché en ville de Genève	1082	tonnes/an	PLASTEAX

Tableau 6. Comparaison avec les statistiques déchets de la ville de Genève

C. PAPIER, ALU, VERRE

Données suisses

	Collecté	Unité	Année	Source
Verre	354.0	kt/an	2012	A
Tôle d'acier étamée et aluminium (sauf boîtes en alu)	17.8	kt/an	2012	А
Papier et carton	1340	kt/an	2012	Α
Canette en aluminium	6.0	kt/an	2012	Α
Emballages papier	239	kt/an	2012	A, B

Données européennes

Types de papier et carton	Consommation	Unité	Année	Source
Journaux	3.5	Mt	2020	В
Autres papiers graphiques	14.9	Mt	2020	В
Matérieux d'emballage	28.7	Mt	2020	В
Carton pour emballage papier	6	Mt	2020	В
Emballages papier	2.5	Mt	2020	В
Autres emballages en papier	4.2	Mt	2020	В
Produits sanitaires et ménagers	7.8	Mt	2020	В
Autres papiers et cartons	3.5	Mt	2020	В

Part de papier qui est utilisée pour l'emballage (à l'exclusion du carton ondulé)	18%
--	-----

Tableau 7. Méthodologie utilisée pour le papier, l'alu et le verre. Données suisses et européennes.

- A) Haumpt et al. (2012). Waste flow diagram
- B) CEPI (2020). Key statistics 2020. European pulp & paper industry
- C) BAFU (2020). Déchets 2019 : Quantités produites et recyclées
- D) Eunomia (2019). Calculation of Littering Rate for Glass Beverage Containers in Scotland

Ville de Genève (Estimation)

Paramètre de projection

2.76% basé sur des données de population

	Collecté	Unité	Source	Taux de littering	Source	Abandonné	Unité
Canettes en aluminium	164	tonnes/an	A, pop	6%	F (bouteilles de boisson)	10	onnes/an
Emballages papier	6617	tonnes/an	A, B, pop	5%	F (contenants alimentaires)	348	onnes/an
Bouteilles en verre	8676	tonnes/an	C, pop	1%	D	87	onnes/an

Tableau 8. Méthodologie utilisée pour le papier, l'alu et le verre. Données de la ville de Genève.

D. POUSSIÈRES DE PNEUS

	Valeur	Unité	Source
Distance totale parcourue par des voitures en Suisse	4.9595E+10	km	В
Emissions de particules	36.5	mg/km	Α
Paramètre de projection	2.8%		Basé sur des données de population
Emissions de particules par la population de Genève - Estimation 1	50	tonnes	Calcul utilisant les km de la Suisse
Distance parcourue par des voitures par la population de Genève	18	km/pers /jour	С
Emissions de particules par la population de Genève - Estimation 2	56	tonnes	Calcul utilisant les km de la ville de Genève

Tableau 9. Méthodologie utilisée pour les poussières de pneus.

E. PEINTURE POUR LES BATEAUX

Monde

	Valeur	Unité	Taux de fuites	Source
Parcs de bateaux de loisirs	32 856 427			D
Peintures sur les bateaux de loisirs	605	kt		E
Pertes de peinture lors de la réapplication hors du bateau (microplastiques)	8	kt	63%	E
Peintures enlevées sans être retirées du bateau (microplastiques)	69	kt	64%	E
Pertes de peinture dans l'eau en raison de l'usure (microplastiques)	57	kt	96%	E

Ville de Genève

VIIIC GC OCIICVC					
	Valeur	Unité	Source	Fuites	Unité
Parcs de bateaux de loisirs	4 300		F	-	
Peintures sur les bateaux de loisirs	79	tonnes	calc	-	
Pertes de peinture lors de la réapplication hors du bateau (microplastiques)	1	tonnes	calc	0.7	tonnes
Peintures enlevées sans être retirées du bateau (microplastiques)	9	tonnes	calc	5.8	tonnes
Pertes de peinture dans l'eau en raison de l'usure (microplastiques)	7	tonnes	calc	7.2	tonnes

Tableau 10. Méthodologie utilisée pour la peinture pour bateau.

A) The Guardian, 2022. Car tyres produce vastly more particle pollution than exhausts, tests show

B) Bolla et al, 2018. Vehicle motion patterns for energy research: Comparison of annual mileage using vehicle and personbased data. In 18th Swiss Transport Research Conference (STRC 2018).

C) OFS, 2010. La mobilité Suisse. Principaux résultats du Microrecensement mobilité et transports 2010

D) ICOMIA (International Council of Marine Industry Associations). (2018). Recreational boating industry statistics 2017.

E) Paruta et al. (2022). Plastic paints the environment.

F) https://www.ge.ch/navigation-capitainerie/places-amarrage-bateau-planche-voile

F. PEINTURE POUR LES BÂTIMENTS

Peinture Bâtiments	Valeur	Unité	Source
Plastique dans la peinture des bâtiments vendue (EU- 27)	1019	kt/an	A1
Nombre de logements (EU-27)	176566029	#	A2
Nombre de logements dans le canton Genève	239694	#	A3
Nombre de logements en ville de Genève	96860	#	calc
Plastique dans la peinture utilisée en ville de Genève	559	tonnes/an	calc
Taux de fuites	12%		A1
Emissions de microplastiques dans environnement	67	tonnes/an	calc

Tableau 11. Méthodologie utilisée pour la peinture des bâtiments.

A1) Paruta et al. (2022). Plastic paints the environment.

A2) United Nations, 2019. Database on Household Size and Composition 2019

A3) OFS (2020). Logements selon les cantons. https://www.bfs.admin.ch/bfs/fr/home/statistiques/construction-logement/logements.html

4.1.6. MESSAGES CLÉS

1'086 tonnes de macro et microdéchets sauvages en ville de Genève chaque année

Les mégots, les emballages papier et les emballages plastique sont les trois principales sources de littering, pour un total de 836 tonnes.

Les mégots sont les déchets les plus fréquemment jetés à terre ; un fumeur jetant à terre en moyenne quatre mégots par jour.

Les émissions de microplastiques liées aux peintures et aux pneus s'élèvent à 137 tonnes.

L'analyse concorde avec les données de terrain de Cortexia, qui estime que les mégots et les emballages papier sont les deux principales sources de déchets en termes de nombre d'unités, et que chaque année, entre 146 et 365 tonnes de mégots sont jetées par terre.

L'analyse qui suit sera centrée sur les sources principales de pollution: mégots et emballages.

4.2. DISTRIBUTION GÉOGRAPHIQUE DU LITTERING

- 4.2.1. Principes généraux de la modélisation
- 4.2.2. Distribution géographique du littering des déchets
- 4.2.3. Résultats: Distribution spatiale du littering des mégots avant ramassage et transport
- 4.2.4. Résultats: Distribution spatiale du littering des emballages avant ramassage et transport

4.2.1. PRINCIPES GÉNÉRAUX DE LA MODÉLISATION

De manière générale, la modélisation a visé à estimer la répartition du littering sur le territoire de la ville de Genève, la part interceptée une fois au sol, et la part transportée dans les eaux.

Les données géographiques de base utilisées sont principalement en libre accès sur le Système d'Information du Territoire à Genève (SITG). Toute la modélisation a été réalisée avec le logiciel FME (Feature Manipulation Engine).

4.2.2. DISTRIBUTION GÉOGRAPHIQUE DU LITTERING DES DÉCHETS

Afin de distribuer géographiquement le littering sur le territoire de la ville de Genève, différentes « activités » au cours desquelles le littering peut avoir lieu ont été identifiées. Les activités sont listées dans le tableau 12.

Les temps passés à effectuer ces actions au cours d'une journée moyenne ont ensuite été estimés, permettant de définir des « parts de temps dédiées aux différentes activités », appelées ici «parts», présentées dans les tableaux 13 et 14.

Les différentes activités identifiées ont été spatialisées sur le territoire de la ville de Genève en fonction de variables géographiques calculées pour chaque sous bassin versant (visibles dans les tableaux 13 et 14). Cette approche a ainsi permis d'estimer une répartition géographique du littering en fonction des caractéristiques territoriales des sous bassins versants.

Pictogramme	Activités au cours desquelles le littering peut avoir lieu
<u> </u>	En Marchant
-	En se déplaçant en voiture
	Lors de pauses sur le lieu de travail
#	Lors de repas en extérieur
EFF	Lors de repas/sorties dans les bars/discothèques
	En attendant le bus/train
#	Lors de sorties dans un parc/plage

Tableau 12. Présentation des activités au cours desquelles le littering peut avoir lieu.

Les tableaux 13 et 14 présentent séparément, pour les mégots et les emballages, les activités identifiées avec la distribution journalière estimée, l'incertitude des données, les sources bibliographiques et enfin les « parts » calculées. Les variables géographiques prises en compte pour effectuer la distribution territoriale sont également présentées pour chaque activité.

Mégots	Description (activités)	Distribution temporelle (h/jour)	Incertitude	Variable géo1	Variable géo 2	Parts %	Somme %
	En Marchant	0.67	Basse	D1	Densité habitant	18.7%	83.8%
Piétons	Lors de repas en extérieur, sorties dans les bars/discothèques	0.26	Moyenne	D3 à D6, d10 et hypothèse	Densité bancs	6.9%	
	Lors de pauses sur le lieu de travail	1.83	Moyenne	D6, D8, D9		50.9%	
	En attendant le bus/train	0.26	Moyenne	D1 1, D1 2		7.2%	
Voitures	En se déplaçant en voiture	0.44	Basse	D1, D2, D1 3	Densité de surface de route	12.3%	12.3%
Parc/plage	Lors de sorties dans un parc/plage	0.14	Haute	Hypothèse		3.9%	3.9%

Tableau 13. Présentation des activités au cours desquelles le littering de mégots peut avoir lieu avec la distribution temporelle permettant de calculer les « parts », ainsi que les variables géographiques utilisées pour la spatialisation. Les sources sont présentées en page suivante (p. 30).

Emballages	Description (activités)	Distribution temporelle (h/jour)	Incertitude	Variable géo1	Variable géo 2	Parts %	Somme %
Piétons	En Marchant	0.67	Basse	D1	Densité d'emploi	42.9%	62.6%
	Lors de repas en extérieur, sorties dans les bars/discothèques	0.05	Moyenne	D3 à D6, d10 et hypothèse	Densité de l'établissement	3.1%	
	En attendant le bus/train	0.26	Moyenne	D1 1, D1 2	Densité d'arrêt TPG	16.7%	
Voitures	En se déplaçant en voiture	0.44	Basse	D1, D2, D1 3	Trafic journalier moyen	28.3%	
Parc/plage	Lors de sorties dans un parc/plage	0.14	Haute	Hypothèse	Densité de surface verte	9.1%	9.1%

Tableau 13. Présentation des activités au cours desquelles le littering d'emballages peut avoir lieu avec la distribution temporelle permettant de calculer les « parts » ainsi que les variables géographiques utilisées pour la spatialisation. Les sources sont présentées ci-dessous.

Sources:

- D1) OFS (2010). La mobilité Suisse. Principaux résultats du Microrecensement mobilité et transports 2010
- D2) https://lenews.ch/2017/02/21/geneva-has-switzerlands-worst-traffic-ranking-ahead-of-new-york/
- D3) https://weatherspark.com/y/53457/Average-Weather-in-Genève-Switzerland-Year-Round
- D4) https://water.usgs.gov/edu/activity-howmuchrain-metric.html
- D5) https://www.meteoblue.com/en/weather/historyclimate/climateobserved/geneva switzerland 2660646
- D6) Office fédéral de la statistique, « Effectif et évolution », sur www.bfs.admin.ch (consulté le 10 août 2021)
- D7) Shiffman, S., & Paty, J. (2006). Smoking patterns and dependence: contrasting chippers and heavy smokers. Journal of abnormal psychology, 115(3), 509.
- D8) https://www.citypopulation.de/en/switzerland/admin/25__genève/
- D9) Statistique Genève (2020). Le travail à travail, à temps partiel dans le canton de Genève: comparaison entre femmes et hommes.
- D11) https://reporting.sbb.ch/en/stations
- D12) Canton Geneve (2020). Annuaire Statistique des transports 2019
- D13) Shiffman, S., Dunbar, M. S., Li, X., Scholl, S. M., Tindle, H. A., Anderson, S. J., & Ferguson, S. G. (2014). Smoking patterns and stimulus control in intermittent and daily smokers. PloS one, 9(3), e89911.

Le tableau 15 résume, pour chaque paramètre géographique, les couches de base (issues du SITG) utilisées ainsi que la description de la géoanalyse effectuée. Pour chaque variable, le résultat du sous bassin versant est ensuite divisé par le total du territoire d'étude afin de calculer une densité.

Variable de distribution géographique	Couches de base SITG	Traitement
Densité d'emplois	REG_ENTREPRISE-ETABLISSEMENT	A partir de l'attribut « Taille », estimation du nombre d'employés moyen pour chaque entreprise puis addition des résultats par sous bassin versant. Division du résultat par la surface du sous bassin versant
Densité d'habitants	OCS_POP_PAR_ADRESSE	Addition du nombre d'habitants de chaque sous bassin versant. Division du résultat par la surface du sousbassin versant
Densité d'établissements	REG_ENTREPRISE_ETABLISSEMENT	Filtre sur les entreprises à partir du « code NOGA » pour garder uniquement les restaurants, cafés, snacks, tea rooms, bars, discos, nights-clubs, etc. puis compte du nombre d'établissements. Division du résultat par la surface du sous bassin versant
Densité de bancs	VDG_SEV_BANCS	Compte du nombre de bancs présents dans chaque sous bassin versant. Division du résultat par surface du sous bassin versant
Densité d'arrêts TPG	TPG_ARRETS	Compte du nombre d'arrêts TPG dans chaque sous bassin versant. Division du résultat par la surface du sous bassin versant
Densité du trafic routier	OTC_PLAN_CHARGE_TRAFIC	Inscription du Trafic Journalier Moyen (TJM) de chaque sous bassin versant. Division du résultat par la surface du sous bassin versant, traversé par une route
Densité de surfaces de routes	CAD_CARTE_OTEMO	Filtre pour ne garder que les routes et chemins puis mesure de la surface de route dans chaque sous bassin versant. Division du résultat par la surface du sous bassin versant
Densité de surfaces vertes	CAD_CARTE_OTERMO	Filtre pour ne garder que les surfaces boisées et vertes puis mesure de la surface verte dans chaque sous bassin versant. Division du résultat par la surface du sous bassin versant.

4.2.3. RÉSULTATS: DISTRIBUTION SPATIALE DU LITTERING DES MÉGOTS AVANT RAMASSAGE ET TRANSPORT

La carte suivante présente la distribution spatiale du littering des mégots avant le ramassage et le transport. Ce résultat intermédiaire montre les endroits où la densité estimée de littering de mégots par m² est la plus élevée.

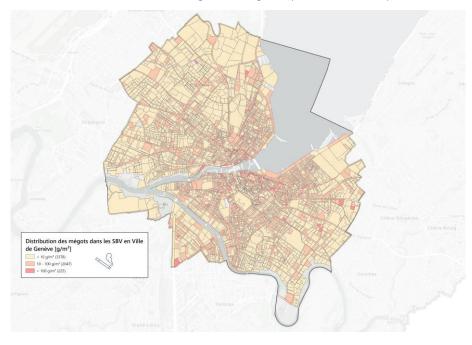


Figure 18. Résultats : distribution spatiale du littering des mégots avant ramassage et transport.

4.2.4. RÉSULTATS: DISTRIBUTION SPATIALE DU LITTERING DES EMBALLAGES AVANT RAMASSAGE ET TRANSPORT

La carte suivante présente la distribution spatiale du littering des emballages avant le ramassage et le transport. Ce résultat intermédiaire montre les endroits où la densité estimée de littering d'emballages par m² est la plus élevée.

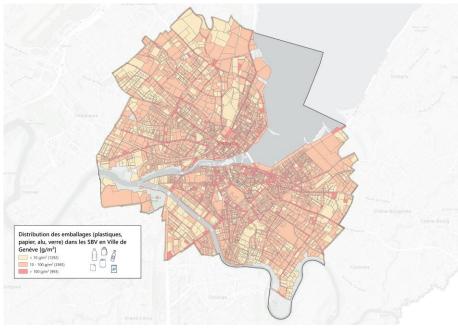


Figure 19. Résultats : distribution spatiale du littering des emballages avant ramassage et transport.

4.3. QUANTITÉ DE DÉCHETS FINISSANT DANS LE LÉMAN ET LES RIVIÈRES

4.3.1. Connectivité entre les réseaux et sous bassins versant

4.3.2. Modélisation du ramassage et du transport des déchets

4.3.3. Résultats

4.3.4. Collecte et fuites des déchets

4.3.1. CONNECTIVITÉ ENTRE LES RÉSEAUX ET SOUS BASSINS VERSANTS

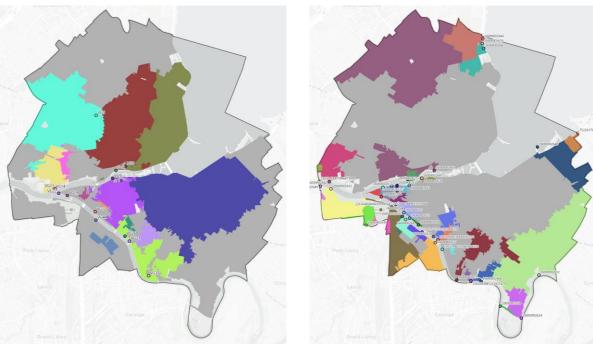
Pour définir la connectivité entre réseaux et sous bassins versants, les géodonnées suivantes ont été extraites du catalogue SITG et utilisées comme données d'entrée d'un premier script FME :

- RAE COLLECTEUR
- RAE_PT_REJET
- RAE DEVERSOIR
- RAE_SOUS_BASSIN_VERSANT
- MNA_TERRAIN_2019

Le script est séparé en trois parties selon les étapes suivantes :

1. Prétraitement

Cette étape a consisté à nettoyer les données de base, notamment en éliminant les doublons au sein des jeux de données. Plusieurs filtres ont ensuite été appliqués afin de simplifier la topologie du réseau et de traiter différemment les réseaux en fonction de leur contenu (eaux pluviales, eaux mélangées et eaux usées).


2. Création de la connectivité du réseau

Dans cette partie du script, l'utilisation de deux transformers (TopologyBuilder et NetworkTopologyCalculator) a permis de déterminer les relations entre les nombreux collecteurs et de définir la connectivité des réseaux, du point le plus amont au point le plus aval (rejet dans le milieu naturel). Ces réseaux connectés ont ensuite été associés selon leur contenu (eaux pluviales ou eaux mélangées), respectivement à un point de rejet ou un déversoir d'orage.

3. Post-traitement

Cette dernière étape a permis de lier les points de rejet (et déversoirs) aux sous bassins versants. Par simple superposition, les sous bassins versants ont pris l'attribut du point de rejet ou du déversoir lié au collecteur le traversant. Par extrapolation, les sous bassins versants sans collecteurs ont récupéré la valeur du sous bassin versant voisin le plus proche.

L'output de ce script est une couche des sous bassins versants avec un nouvel attribut identifiant le point de rejet ou le déversoir d'orage par lequel les eaux vont se déverser dans le milieu naturel. Les figures suivantes (figure 20 et 21) présentent les liens entre les sous bassins versants et les déversoirs (à gauche) pour le réseau unitaire, et entre les sous bassins versants et les points de rejets (à droite) pour le réseau séparatif.

Figures 20 et 21. Connectivité entre sous bassins versants et les déversoirs d'orage (réseau unitaire) à gauche et sous bassins versants et les points de rejet (réseau séparatif) à droite.

4.3.2. MODÉLISATION DU RAMASSAGE ET DU TRANSPORT DES DÉCHETS

Cette section de l'étude visait à estimer les proportions de déchets jetés au sol qui sont interceptées et celles qui sont transportées par les réseaux pour être rejetées dans le milieu naturel. Il s'agit notamment d'estimer quelle partie des déchets est interceptée (par les balayeuses et le nettoyage des rues, ainsi que par les STEP), quelle partie est jetée directement dans le milieu naturel (fuites directes en bordure de rivière/lac), et quelle partie est dirigée vers le réseau d'eaux pluviales pour finalement se retrouver dans le milieu naturel (fuites indirectes).

Pour réaliser cette modélisation, 4 schémas de transports ont été définis, en fonction de la proximité des sous bassins versants aux milieux naturels, (proche/loin des berges) et de la nature des déchets, qui influence leur transportabilité (mégots/emballages). Le tableau 16 résume cette schématique.

Cabána du tuananant	Proximité des rives		
Schéma du transport	Proche	Loin	
Mégots	1	2	
Emballages	3	4	

Tableau 16. Résumé de la schématique de la modélisation. Voir figure 23 et 24.

Les principales actions d'interceptions et de transports définies dans les schémas de modélisation ont été:

- Fuites directes dans le milieu (jet direct, vent)
- Ramassage par balayeuses de voirie
- Transport via réseau EP et EU
- Ramassage par vidage des sacs de route
- Interception en entrée de STEP
- Rejet via point de rejet EP ou déversoir d'orage

Figure 22. Sous bassins versants les plus proches des rivages.

Des parts pour chacune de ces actions ont ensuite été définies et sont présentées dans la figure 23.

MODÉLISATION DU RAMASSAGE ET TRANSPORT DES DÉCHETS [%]

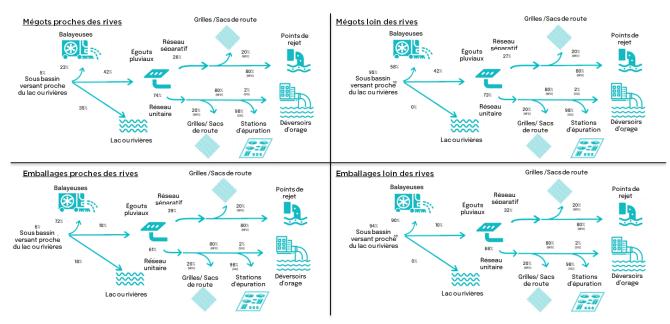


Figure 23. Modélisation du ramassage et transport des déchets en %.

4.3.3. RÉSULTATS

A. MODÉLISATION DU RAMASSAGE ET TRANSPORT DES DÉCHETS [TONNES]

La figure suivante présente les résultats de la modélisation en tonne de déchets par année pour la ville de Genève.

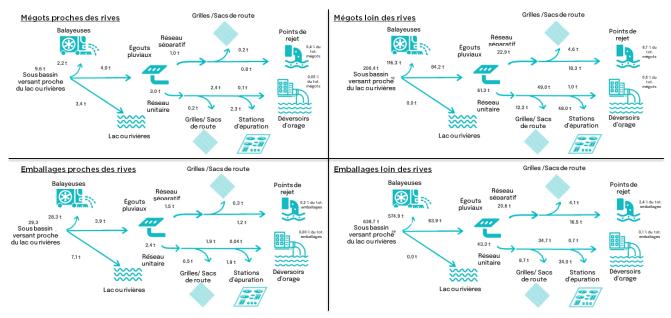


Figure 24. Modélisation du ramassage et transport des déchets en tonnes de déchets par an.

B. LES MÉGOTS

Mégots de cigarettes		Quantité [Tonnes]	Quantité [%]	Parts traitées	
Qua	ntité totale	210	100%	/ Fuites [%]	
<u>e</u>	Fuites directes dans lac et rivières	3.4	2%		
Fuites dans milieu	Fuites indirectes - déversoirs d'orage réseau unitaire		0%	11%	
Fuite	Fuites indirects – point de rejet réseau séparatif	19.2	9%		
	Collectés par balayeuse	118.3	56%		
Collectés / traités	Collectés par traitement des eaux usées (réseau unitaire)	50.3	24%	89%	
	Collectés par sacs de route (réseau séparatif)	4.8	2%		
S	Collectés par sacs de route (réseau unitaire)	12.9	6%		

Tableau 17. Tableau de résultat de la modélisation pour les mégots de cigarettes.

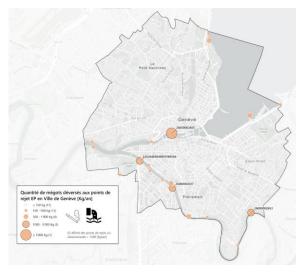


Figure 25. Carte présentant les quantités de mégots déversés aux points de rejets.

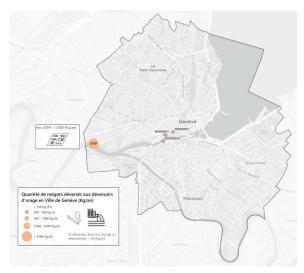


Figure 26. Carte présentant les quantités de mégots déversés aux déversoirs d'orage.

Le tableau 17 présente les résultats de la modélisation pour les mégots de cigarettes.

La modélisation montre qu'au total 89% des mégots sont interceptés.

Les 11% qui sont rejetés dans le milieu représentent 23,6 t/an, réparties entre les fuites indirectes aux points de rejet du réseau séparatif (9%, 19,2 t/an), les fuites directes (2%, 3,4 t/an), et les fuites indirectes aux déversoirs d'orage du réseau unitaire (~0,5%, 1 t/an).

Au niveau des rejets par les points de rejet, 67% des mégots (12,8 t/an) sont rejetés par 4 points de rejets identifiés sur les figures 24 et 26. Il s'agit d'exutoires de moyennes à grandes dimensions (section de 2,5 m² à 36,8 m²).

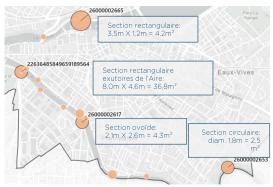


Figure 27. Identification des points de rejets principaux liés aux mégots avec information de section.

Au niveau des déversements par les déversoirs, 75% des mégots (0,8 t/an) sont rejetés par 3 déversoirs d'orage identifiés sur les figures 25 et 27. Par ailleurs, environ 1 t/an est probablement rejetée au niveau de la STEP d'Aïre.

Figure 28. Identification des déversoirs principaux liés aux mégots.

3.2. LES EMBALLAGES

Emballages (Plastiques, alu, verre, papier)		Quantité [Tonnes]	Quantité [%]	Parts traitées
Quai	Quantité totale		100%	/ Fuites [%]
<u>e</u>	Fuites directes dans lac et rivières	7.1	1%	
es dans milieu	Fuites indirectes - déversoirs d'orage réseau unitaire	0.7	0%	4%
Fuites indirects – point de rejet réseau séparatif		17.7	3%	
	Collectés par balayeuse	603.7	89%	
tés / tra	Collectés par traitement des eaux usées (réseau unitaire)	35.9	5%	
	Collectés par sacs de route (réseau séparatif)	4.4	1%	96%
Ö	Collectés par sacs de route (réseau unitaire)	9.1	1%	

Tableau 18. Tableau de résultat de la modélisation pour les emballages.

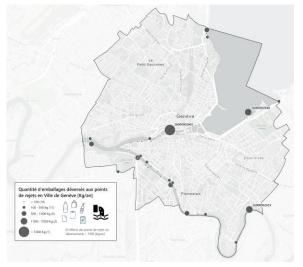


Figure 29 Carte présentant les quantités d'emballages déversés aux points de rejets.

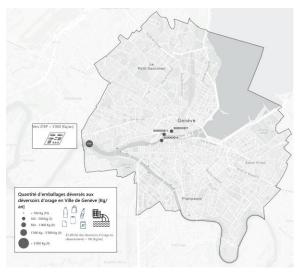


Figure 30. Carte présentant les quantités d'emballages déversés aux déversoirs d'orage.

Le tableau 18 présente les résultats de la modélisation pour les emballages.

La modélisation montre qu'au total 96% des emballages sont interceptés.

Les 4% qui sont rejetés dans le milieu représentent 25,5 t/an, répartis entre les fuites indirectes aux points de rejet du réseau séparatif (3%, 17,7 t/an), les fuites directes (1%, 7,1 t/an), et les fuites indirectes aux déversoirs d'orage du réseau unitaire (~0,5%, 0,7 t/an).

Au niveau des rejets par les points de rejet, 57% des emballages (10,1 t/an) sont rejetés par 3 points de rejets identifiés sur les figures 28 et 30. Il s'agit d'exutoires de moyennes dimensions (section de 2,5m² à 4,2 m²).

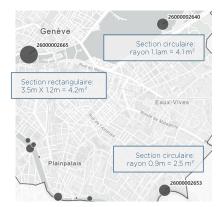


Figure 31. Identification des points de rejets principaux liés aux emballages.

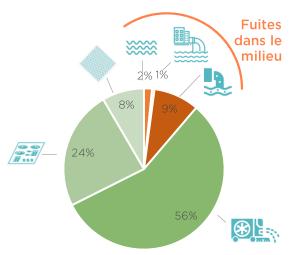

Au niveau des déversements par les déversoirs, 72% des emballages (0,5 t/an) sont rejetés par trois déversoirs d'orage identifiés sur les figures 29 et 31. Par ailleurs, environ 0,7 t/an est probablement rejetée au niveau de la STEP d'Aïre.

Figure 32. Identification des déversoirs principaux liés aux emballages.

4.3.4. COLLECTE ET FUITES DES DÉCHETS

A. MÉGOTS

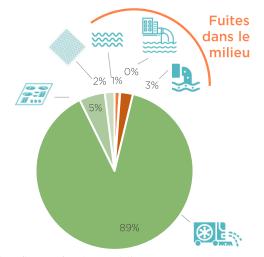

- Fuites directes dans lacs et rivières
- Fuites indirectes déversoirs d'orage réseau unitaire
- Fuites indirectes point de rejet réseau séparatif
- Collectés par balayeuse
- Collectés par traitement des eaux usées (réseau unitaire)
- Collectés par sacs de route

Figure 33. Collecte et fuites des déchets pour les mégots.

En ce qui concerne les mégots, 9% fuient par les points de rejet du réseau séparatif, 2% fuient directement dans le lac et les rivières, et 1% par les déversoirs d'orage. Ceci représente respectivement 19,2 t/an, 3,4 t/an et 1,0 t/an pour un total de 23,6 t/an.

89% des mégots sont interceptés, ce qui représente 186 t/an.

B. EMBALLAGES

- Fuites directes dans lacs et rivières
- Fuites indirectes déversoirs d'orage réseau unitaire
- Fuites indirectes point de rejet réseau séparatif
- Collectés par balayeuse
- Collectés par traitement des eaux usées (réseau unitaire)
- Collectés par sacs de route

Figure 34. Collecte et fuites des déchets pour les emballages.

Concernant les emballages, 3% fuient par les points de rejet du réseau séparatif, 1% fuit directement dans le lac et les rivières, et 0,1% par les déversoirs d'orage. Ceci représente respectivement 17,7 t/an, 7,1 t/an et 0,7 t/an pour un total de 25,5 t/an. 96% des emballages sont interceptés, ce qui représente 653,1 t/an.

La majorité des déchets sauvages sont capturés par les balayeuses et par le système de traitement des eaux usées. Les fuites principales dans l'eau du lac et les rivières sont liées au réseau séparatif et passent par les points de rejets des eaux pluviales.

4.4. SOLUTIONS POUR LIMITER EFFICACEMENT LES FUITES

- 4.4.1. Types de solutions
- 4.4.2. Inventaire des solutions
- 4.4.3. Illustration des solutions
- 4.4.4. Études de cas
- 4.4.5. Conclusions et suites possibles

4.4.1. TYPES DE SOLUTIONS

À Genève, différentes solutions pourraient être mises en œuvre pour lutter contre la pollution plastique en ville. Voici les différents types de solutions applicables :

- 1. **Prévention :** Sensibilisation et éducation des individus sur les impacts négatifs du littering. Il s'agit de promouvoir des comportements responsables tels que la réduction de l'utilisation de produits jetables, le recyclage approprié et la gestion adéquate des déchets.
- 2. Nettoyage des routes : Cette mesure implique le nettoyage régulier des routes, des trottoirs et des espaces publics pour enlever les déchets jetés. Des équipes de nettoyage sont souvent mobilisées pour ramasser les déchets et les acheminer vers des installations de gestion des déchets.

Ces deux premières solutions n'ont pas été couvertes par la recherche de littérature complémentaire au rapport initial. Cependant, les quatre solutions suivantes ont été analysées :

- **3.** Interception avant l'introduction dans le réseau : Installation de dispositifs de collecte tels que des grilles à l'entrée des égouts pour intercepter les déchets avant qu'ils n'entrent dans le système d'égouts et ne se propagent dans les cours d'eau.
- 4. Interception dans le réseau séparatif/combiné: Collecte des déchets déjà infiltrés dans les égouts grâce à des équipements tels que des systèmes d'aspiration ou des véhicules de collecte spécifiques aux canalisations souterraines.
- **5.** Interception à l'exutoire en rivière et lac : Les déchets ayant atteint les installations de traitement des eaux usées, peuvent être collectés à l'aide de filtres, de filets ou de barrières flottantes avant leur sortie des égouts.
- **6. Récupération dans le milieu naturel :** Mise en place de dispositifs de collecte, tels que des barrages flottants ou l'utilisation de bateaux équipés de filets de collecte pour rassembler et capturer les déchets qui se trouvent déjà dans les cours d'eau.

Ces solutions visent à minimiser la quantité de déchets qui entre dans les systèmes de drainage urbain, les cours d'eau et le lac, et à prévenir la pollution à sa source. En combinant ces approches avec des efforts de sensibilisation, de recyclage et de réduction de la consommation, il est possible de réduire la pollution dans la ville et de protéger l'environnement aquatique.

La figure suivante illustre les différents types de solutions par ordre de priorité.

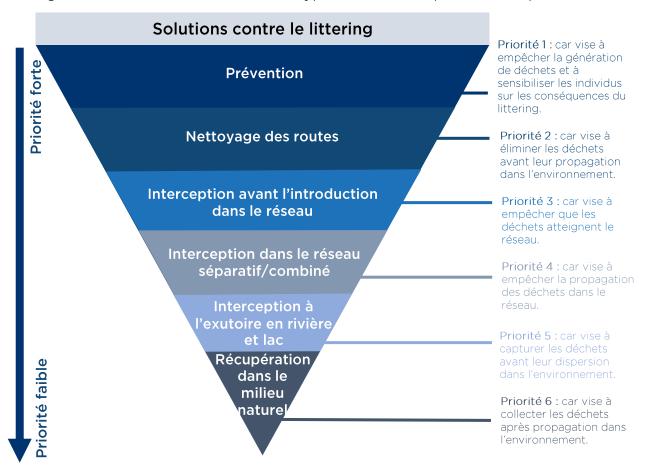


Figure 35. Catégories des solutions au littering.

4.4.2. INVENTAIRE DES SOLUTIONS

Les solutions pour lutter contre le littering sont présentées dans le tableau de la page suivante. Ce tableau comprend à la fois les solutions proposées dans le rapport initial et de nouvelles solutions découvertes grâce à une recherche approfondie de la littérature. La figure 36 ci-dessous présente, quant à elle, les effets potentiels des mesures de réduction des fuites proposées dans le rapport initial.

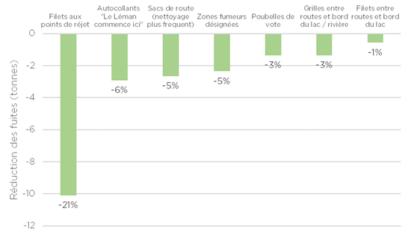


Figure 36. Effets des mesures de réduction des fuites du rapport initial.

		Solutions	Catégorie	Type de déchets
9	S1	Filets entre les routes et le bord du lac	Interception à l'exutoire en rivière et lac	Emballages
ANS	S2	Sacs de route (nettoyage plus fréquent)	Interception avant l'introduction dans le réseau	Emballages
ES D	S 3	Filets aux points de rejet	Interception à l'exutoire en rivière et lac	Macrodéchets
OSÉE INIT	S4	Cendriers de poche	Prévention	Mégots de cigarette
ONS PROPOSÉES RAPPORT INITIAL	S5	Zones fumeurs désignées	Prévention	Mégots de cigarette
IONS	S6	Poubelles de vote	Prévention	Mégots de cigarette
SOLUTIONS PROPOSÉES DANS LE RAPPORT INITIAL	S7	Grilles entre les routes et le bord du lac / rivière	Interception avant l'introduction dans le réseau	Mégots de cigarette
S	S8	Autocollants "Le Léman commence ici"	Prévention	Mégots de cigarette
DE	S9	Waste Water Treatment and Cleaning systems by Pipelife	Interception dans le réseau séparatif/combiné	Tous
품	S10	Wash Drums by Huber Technologies	Interception dans le réseau séparatif/combiné	Tous
LA RECHERCHE	S11	The Blue Barriers by Sea Defence Solutions	Récupération dans le milieu naturel	Macrodéchets
REC	S12	River Litter Booms/Traps by Plastics SA	Récupération dans le milieu naturel	Macrodéchets
	S13	River Cleaning System	Récupération dans le milieu naturel	Macrodéchets
TE /	S14	The Great Bubble Barrier	Récupération dans le milieu naturel	Macrodéchets
SUI	S15	Pixie Drone by 4Ocean	Récupération dans le milieu naturel	Tous
SÉES SUITE À LITTÉRATURE	S16	Collec'Thor by 4Ocean	Récupération dans le milieu naturel	Tous
PO:	S17	Waste Shark and Tender Shark	Récupération dans le milieu naturel	Tous
S PRO	S18	Water Witch Versi Cat by Water Maintenance Solutions	Récupération dans le milieu naturel	Tous
NO	S19	Séparateur cyclonique	Interception dans le réseau séparatif/combiné	Macrodéchets
SOLUTIONS PROPOSÉES SUITE LITTÉRATUR	S20	Pollustock, filets anti-déchets	Interception à l'exutoire en rivière et lac	Macrodéchets
	S21	Double filet collecteur, Green City Organisation	Interception à l'exutoire en rivière et lac	Macrodéchets

Tableau 19. Inventaire des solutions.

S2: GIZ, University of Leeds, Eawag-Sandec, Wasteaware (2020). User Manual: Waste Flow Diagram (WFD): A rapid assessment tool for mapping waste flows and quantifying plastic leakage. Version 1.0. February 2020.

S5: WRAP (2020) The Right Bin in the Right Place WRAP: Banbury

- S5 : State of NSW and Environment Protection Authority (2019). Cigarette Butt Litter Prevention Trial: Identifying effective strategies to reduce cigarette butt litter
- S5 : ICF, Eunomia, European Commission DG-Env. 2018. Assessment of measures to reduce marine litter from single use plastics
- S5: Shiffman et al. (2014). Smoking patterns and stimulus control in intermittent and daily smokers.
- S8: Webler and Jakubowski (2022). Attitudes, Beliefs, and Behaviors about Cigarette-Butt Littering among College-Aged Adults in the United States
- S9: https://www.pipelife.com/infrastructure/wastewater/ww-treatment-or-cleaning-systems.html
- S10 : https://www.huber-technology.com/solutions/water-reuse/municipal-wastewater.html
- S11 : https://www.seadefencesolutions.com/blue-barriers/
- S12 : https://www.marinelittersolutions.com/projects/river-catchment-project-river-litter-booms-traps/
- S13: https://rivercleaning.com/river-cleaning-system/
- S14: https://thegreatbubblebarrier.com/
- S15: https://www.4ocean.com/pages/4ocean-x-poralu-bebot
- S16: https://www.ranmarine.io/products/wasteshark-3/
- S17: https://riverclean.ethz.ch/projects/#V-Team
- S18: https://waterwitch.com/
- S19: https://www.sciencedirect.com/topics/engineering/cyclone-separator
- S20 : https://pollustock.com/filet-anti-dechets/
- S21: https://www.greencityorganisation.fr

4.4.3. ILLUSTRATION DES SOLUTIONS

7	+.5. ILLOS I RATION	DES SOLUTIONS		
	Solutions	Commentaires	Mesurer l'impact	Type de déchets
S1	Filets entre routes et bord du lac	Dans la ville de Genève la plupart des rives sont artificielles. Si les filets étaient utilisés partout, ils pourraient réduire considérablement les fuites directes dans l'eau. Là où les filets seront utilisés ils pourraient prévenir 80% de fuites directes dans l'eau (les emballages plus petits vont passer par les mailles et ceux qui sont trop légers peuvent se faire importer par le vent). Nous faisons l'hypothèse que seulement 10% des rives seront équipées ainsi, à cause du fait que les filets rendent l'accès au lac difficile.	Les déchets près des filets pourraient être ramassés séparément afin d'évaluer les fuites prévenues grâce à la présence des filets. Une caractérisation des déchets collectés sera nécessaire pour trier entre les feuilles, les branches et les emballages.	Emballages
S2	Sacs de route (nettoyage plus fréquent) Conceil en la tria 800 Plates en latin, aport part. Trace destines en latin 800 Plates en latin plus plus plus plus plus plus plus plus	Selon l'outil 'Waste Flow Diagram' de l'agence allemande de coopération internationale (GIZ), vider les sacs de route plus de deux fois par an dans une ville au climat similaire à celui de Genève pourrait augmenter de 32% la quantité de déchets capturés par ces sacs. Actuellement, à Genève, les sacs sont vidés une fois par an, ce qui, d'après le WFD, correspond à un taux de capture de 20%. Nous faisons l'hypothèse que tous les sacs de route du réseau seront vidés plus de deux fois par an.	Augmenter progressivement le nombre de fois que les sacs de route sont vidés et peser les déchets récoltés dans les sacs de routes chaque année.	Emballages
S3	Filets aux points de rejet	Selon l'analyse effectuée, si les 3 principaux points de rejet étaient équipés par des filets, cela permettrait la capture de 10.1 tonnes d'emballages.	Peser les déchets récoltés dans les filets et effectuer une caractérisation des déchets.	Macro- déchets
S4	Cendrier de poche	Nous n'avons pas trouvé d'étude qui quantifie l'impact des cendriers de poche	Qualitativement avec un sondage pour savoir comment les gens traitent leurs mégots	Mégots de cigarette
S5	Zones fumeurs désignées	Selon deux études en Angleterre et en Australie le littering est largement réduit à l'intérieur des zones fumeurs désignées. De 71% à 8% en Angleterre et de 60% à 40% en Australie. Selon notre étude, 29% des cigarettes misent sur le marché sont jetées dans la nature, en considérant que entre 40% et 60% de cigarettes sont fumées à la maison, notre taux de littering à l'extérieur est entre 48% et 73%. Si les zones fumeurs étaient disponibles à 20% des fumeurs (paramètre variable selon le nombre de zones créées), on pourrait estimer une réduction de littering de 20% * 50% = 10%	Avec des analyses de terrain avant et après la mise en place des zones fumeurs, en suivant la méthodologie "Butt Litter Check Guidelines" développée par l'autorité de protection environnementale «New South Wales (Australie)».	Mégots de cigarette

	Solutions	Commentaires	Mesurer l'impact	Type de déchets
S6	Poubelles de vote Lightette Butt ou the geound Litterage YES CAMPILE NO	Une étude menée en Angleterre a révélé qu'à l'endroit où les poubelles de vote étaient installées, 29% des mégots étaient correctement jetés dans ces poubelles. Si les poubelles de vote étaient disponibles pour 20% des fumeurs (ce chiffre étant variable en fonction du nombre de poubelles installées), on pourrait estimer une réduction du littering et des fuites de l'ordre de 6%.	En pesant les mégots jetés dans les poubelles de vote.	Mégots de cigarette
S7	Grilles entre routes et bord du lac / rivière	Dans la ville de Genève la plupart des rives sont artificielles. Si les grillages étaient utilisés partout, ils pourraient réduire considérablement les fuites directes dans l'eau. Attention, pour nettoyer les grilles il faudrait utiliser des aspirateurs, les balayeuses risquent de pousser les mégots dans l'eau. Aucune étude existe sur l'efficacité de cette mesure. Ici nous faisons l'hypothèse que les grilles vont être utilisées sur 80% des rives et vont prévenir 50% de fuites directe dans l'eau dans ces zones	En pesant les mégots récupérés des grilles.	Mégots de cigarette
\$8	Autocollants "Le Léman commence ici"	Dans notre analyse nous faisons l'hypothèse que 7% de mégots, jetés dans la nature, sont directement jetés dans les grilles d'égouts (basée sur un sondage aux USA). 80% des mégots jetés dans les réseaux séparatifs se retrouvent dans l'eau du lac et des rivières. Si les autocollants étaient posés sur les grilles d'égout du réseau séparatif (autours de 25% des grilles), les fuites pourraient être réduites au maximum de 210 tonnes x 7% x 25% x 80% = 2.9 tonnes.	Installer des filets à mailles fines derrière les grilles d'égout et compter le nombre de mégots récupérés par le filet avant et après avoir affiché l'autocollant "Le Léman commence ici". Il faudrait faire cela pendant une saison sèche pour éviter que les filets posent des problèmes d'évacuation des eaux	Mégots de cigarette
S9	Waste Water Treatment and Cleaning systems by Pipelife	Les séparateurs spéciaux offrent une solution efficace pour de nombreux types de pollution qui peuvent être éliminés facilement de l'eau par gravité. Les particules solides se déposent dans la première chambre, tandis que les polluants légers remontent à la surface et sont retenus dans la deuxième chambre. Une fois purifiée, l'eau nettoyée est relâchée sans causer de dommages à l'environnement.	En pesant le matériel récupéré	Tous

	Solutions	Commentaires	Mesurer l'impact	Type de déchets
S10	HUBER Sludgecleaner STRAINPRESS	Le STRAINPRESS est un séparateur de matériau grossier horizontal en forme de tuyau qui se compose d'une zone d'entrée et d'entraînement, d'une zone de criblage et de presse et enfin d'une section de décharge avec un dispositif conique de régulation de pression. Le matériau grossier est séparé en continu sous pression et le nettoyage périodique de la zone de criblage par lavage à contre-courant n'est pas nécessaire.	En pesant le matériel récupéré	Tous
S11	The Blue Barriers by Sea Defence Solutions	Elle utilise le flux d'eau pour accompagner les déchets plastiques vers un bassin de collecte d'un côté de la rivière, où ils peuvent être facilement enlevés et dirigés vers le recyclage.	Efficacité de collecte élevée - 100 % dans des conditions standard, 92 % dans des conditions d'inondation.	Macro- déchets (flottants)
S12	River Litter Booms/Traps by Plastics SA	Ces barrières sont conçues pour piéger les déchets qui s'échouent dans les rivières en amont. Les flèches permettent également de recueillir la litière piégée à partir d'un seul point. Ces dispositifs ne présentent aucun risque pour les espèces présentes dans les rivières.	En pesant le matériel récupéré	Macro- déchets (flottants)
S13	River Cleaning System	Le système de nettoyage est constitué d'une série de dispositifs circulaires flottants, positionnés en diagonale sur le cours de la rivière. Ainsi positionnés, ils permettent d'intercepter les déchets et de les transporter jusqu'à la rive, dans une zone de stockage spéciale. Les dispositifs sont 100% modulables en fonction de la taille de la rivière. Le système d'ancrage et la structure du River Cleaning System lui permettent de se comporter exactement comme s'il s'agissait d'une série de bouées normales. Ainsi, lorsqu'elles entrent en contact avec les bateaux, elles se laissent entraîner le long des bords, puis reviennent à leur position de départ.	La barrière de nettoyage des rivières intercepte plus de 90 %, en moyenne, des débris trouvés dans les eaux de surface (0-35 cm sous le niveau de l'eau). Les débris interceptés ont une taille comprise entre 2 et 70 cm.	Macro- déchets (flottants)

	Solutions	Commentaires	Mesurer l'impact	Type de déchets
S14	The Great Bubble Barrier	Un « rideau de bulles » est créé en pompant de l'air à travers un tube perforé au fond de la voie d'eau. Il crée un courant ascendant qui fait remonter le plastique à la surface. En plaçant cette barrière à bulles en diagonale sur la rivière, le flux naturel de l'eau pousse les déchets plastiques sur le côté et dans le système de captage. Une fois collectés, les déchets sont retirés pour être traités et réutilisés. The Great Bubble Barrier est intéressante car elle est laisse le passage maritime ouvert, est sûre pour la vie aquatique, fonctionne 24 heures sur 24 ,7 jours sur 7 et permet d'augmenter l'oxygène dissous.	Taux de capture de 86 % d'après les données du projet pilote. 85 kg de débris secs inorganiques sont collectés par The Great Bubble Barrier à Amsterdam chaque mois ; ceci représente environ 8000 pièces de débris secs inorganiques (données de 2021). Taille des particules capturées - 1mm à 1m.	Macro- déchets
S15	Pixie Drone by 4Ocean	Ce drone aquatique flottant peut être télécommandé ou fonctionner de manière autonome grâce à une programmation adaptée aux rivières et aux océans. Il est capable de détecter des obstacles jusqu'à une distance de 30 mètres. Livré avec une application dédiée, il permet de suivre son activité et de planifier son itinéraire. De plus, il est équipé d'une caméra vidéo qui offre la possibilité d'enregistrer les débris qu'il collecte.	Il collecte les déchets flottants sous toutes leurs formes : organiques, plastiques, verre, métal, papier, tissu, caoutchouc. Il a une capacité de collecte de 160 litres par mission.	Tous les déchets flottants
S16	Collec'Thor by 4Ocean	Collec'Thor attire et collecte tous les déchets solides et liquides flottants à la surface de l'eau. Très ergonomique, sans sac à déchets, il se vide et se nettoie facilement. De plus, il est équipé d'un système de poignées pour faciliter l'entretien. Remarque : Il est installé au bord de l'eau et/ou sur des quais flottants dans les zones où des circuits de déchets marins ont été identifiés.	Il capte les microplastiques à partir de 4 mm - bouteilles en plastique, mégots de cigarettes, emballages, microplastiques, hydrocarbures. Il peut contenir jusqu'à 100 kg de déchets.	Tous les déchets flottants
S17	Waste Shark and Tender Shark	Le drone aquatique, qu'il soit manuel ou automatisé, fonctionne sur batterie. Il est équipé de LIDAR afin d'éviter les collisions avec d'autres engins flottants ou les bateaux. Cette technologie permet un accès en temps réel aux données sur la qualité de l'eau et effectue un marquage des données GPS pour une mesure précise des zones à forte concentration de déchets.	Capacité de collecte des déchets jusqu'à 160 litres par déploiement. Collecte les plastiques, les microplastiques, la végétation étrangère (par exemple les lentilles d'eau), les débris flottants.	Tous les déchets flottants
S18	Water Witch Versi Cat by Water Maintenance Solutions	La fonction principale du Versi-Cat est la collecte efficace des déchets, des débris et de la végétation aquatique de la surface de l'eau dans un panier amovible, qui peut être soulevé et basculé directement dans une benne ou un réceptacle sur le rivage pour être éliminé.	Le Cargo Pod est spécialement conçu pour transporter jusqu'à une tonne de marchandises et d'équipements, pour une utilisation sur l'eau ou en dehors.	Tous les déchets flottants

	Solutions	Commentaires	Mesurer l'impact	Type de déchets
S19	Séparateur cyclonique	Le séparateur cyclonique d'Hydroconcept retient les macrodéchets (bouteilles plastiques, feuilles, etc.), les matières en suspension (sables) et les hydrocarbures légers présents dans les eaux de ruissellement. Il comprend une cuve préfabriquée en béton armé et une grille cylindrique en acier inoxydable.	En pesant le matériel récupéré	Macro- déchets
S20	Pollustock, filets anti- déchets	La solution de Pollustock consiste en des filets anti-déchets conçus pour retenir les macrodéchets, tels que les sacs en plastique, les canettes et les emballages, à la sortie des canalisations et des exutoires en mer. Ces filets sont durables, réutilisables et résistants, permettant ainsi de collecter d'importants volumes de déchets flottants tout en préservant l'environnement. Ils sont utilisés dans le but de prévenir la dispersion des déchets et de protéger les écosystèmes marins.	Le principal indicateur de l'efficacité des filets est la quantité de déchets collectés. Les filets sont régulièrement vidés et les déchets qu'ils ont capturés sont triés et enregistrés. La mesure de la quantité de déchets récupérés permet d'évaluer l'efficacité du dispositif.	Macro- déchets
S21	Double filet collecteur, Green City Organisation	La solution du double filet collecteur de Green City Organisation vise à piéger les déchets urbains aux embouchures des réseaux d'eau pluviale afin de réduire la pollution maritime provenant de la terre. Le dispositif utilise un système de filets pour capturer les déchets tout en permettant l'écoulement de l'eau de pluie, ce qui facilite leur collecte et leur élimination appropriée. L'objectif principal est d'améliorer la gestion des déchets urbains et de prévenir leur dispersion dans les cours d'eau et les écosystèmes marins.	L'évaluation de l'efficacité du dispositif peut se faire en quantifiant la quantité de déchets capturés par les filets. Cela peut être mesuré en pesant les déchets collectés régulièrement et en suivant leur évolution dans le temps.	Macro- déchets

4.4.4 ETUDES DE CAS

A. IMPLÉMENTATION SOLUTION: SAC DE ROUTES - GENÈVE, SUISSE

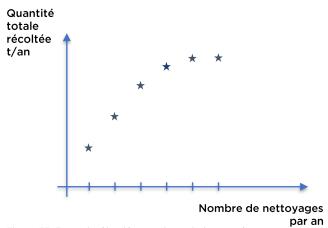


Figure 37. Exemple d'implémentation solution sac de route.

En ce moment la ville de Genève nettoie les sacs de route 1 fois par an.

Nous conseillons d'augmenter progressivement la fréquence de nettoyage jusqu'à ce que la quantité totale de déchets récoltées plafonne.

B. IMPLÉMENTATION SOLUTION : THE GREAT BUBBLE BARRIER - AMSTERDAM, PAYS-BAS

Les résultats préliminaires de notre étude d'un an avec la Plastic Soup Foundation montrent que The Great Bubble Barrier installée à Amsterdam capture en moyenne 85 kg par mois de débris inorganiques, soit l'équivalent de 2,7 tonnes. Les déchets collectés devraient fournir des informations sur le type et la quantité de plastique que l'on trouve dans les cours d'eau néerlandais.

Cette technologie est également mise en œuvre à Berlin, où il a été prouvé qu'elle pouvait capturer des particules d'une taille comprise entre 1 millimètre et 1 mètre. Les fabricants de cette technologie déclarent : "Nous le constatons souvent lors des opérations de tri que nous organisons chaque mois en collaboration avec la Plastic Soup Foundation, où nous trouvons un nombre stupéfiant de particules de polystyrène. Nous savons que les microplastiques (particules de moins de 5 mm) sont directement dérivés des macroplastiques. Il est donc crucial de collecter ces articles avant qu'ils n'atteignent les mers où il sera impossible de les récupérer, car il n'existe actuellement aucune technologie permettant de collecter les microplastiques non visibles (de moins de 1 mm)".

Figure 38. Exemple d'implémentation solution The Great Bubble Barrier.

C. IMPLÉMENTATION SOLUTION : BLUE BARRIERS - LAMONE RIVER, ITALIE

Figure 39. Exemple d'implémentation Blue Barriers.

Cette solution a été testée sur la rivière Lamone, en Italie, et a confirmé une efficacité de collecte de plastiques à 100 %. C'était la première fois que les barrières étaient installées à grande échelle dans une rivière. Les résultats des collectes ont été incroyablement encourageants, la structure s'est comportée comme prévu et aucun problème n'est survenu.

Plus de 30 objets en plastique ont été collectés. Chaque section de 20 mètres est composée de modules plus petits fabriqués à partir de matériaux recyclés et recyclables, avec un noyau interne en acier logé à l'intérieur d'une structure flottante en polyéthylène.

Les barrières s'étendent jusqu'à 90 centimètres sous la surface de l'eau, étant donné que le plastique flotte généralement dans les 50 premiers centimètres. Elles maintiennent constamment leur position perpendiculaire afin d'empêcher tout déchet de passer en dessous. Ces barrières sont conçues pour ne pas perturber les bateaux ni la faune.

D. IMPLÉMENTATION SOLUTION: WATER WITCH VERSICAT - EUROPE

Cette solution du Marine Waste Management est très populaire et mise en œuvre dans de nombreux pays d'Europe. Par exemple, cette technologie a été mise en œuvre dans le port de Bruxelles (avec 95 autres villes) et a permis de collecter chaque année entre 200 et 250 m³ de plastiques et de débris liés à l'océan.

Figure 40. Exemple d'implémentation Water Witch Versi-Cat, Bruxelles.

Actuellement, les équipes de nettoyage interviennent presque quotidiennement, le plastique à usage unique constituant la principale source de déchets. La majeure partie des déchets marins collectés se compose de produits en plastique tels que des bouteilles de boisson, des sacs, des emballages alimentaires, des gobelets et des plateaux. En outre, les équipes récupèrent des objets plus volumineux comme des vélos, des matelas et des détritus jetés sur les berges. Selon le ministre bruxellois Alain Maron, "la propreté est un bien commun. Étant le point le plus bas de notre région et également un immense bassin de rétention des eaux pluviales, le canal accumule une grande partie des déchets issus de la vie urbaine, nécessitant une collecte régulière pour éviter tout déversement en mer", souligne-t-il. L'écrémeur électrique VersiCat, en aluminium de 8,0 mètres, est construit de manière durable, composé à 75 % de matériaux recyclés et entièrement recyclable à la fin de sa durée de vie. Il est équipé d'un moteur Cruise 12 Torqeedo de 12 kW, lui permettant de naviguer silencieusement à la vitesse de 7 nœuds requise. Ses batteries lithium Power 48 sont parmi les plus récentes et les plus sûres du marché. Les commandes électriques du bateau comprennent un GPS intégré, un ordinateur de bord affichant des informations telles que la vitesse, la puissance d'entrée, l'état de charge, l'autonomie restante, ainsi qu'un système de communication avancé interconnectant la technologie Bluetooth et les applications de l'utilisateur avec l'ensemble du système.

E. IMPLÉMENTATION SOLUTION: POLLUSTOCK - RODEZ, FRANCE

Figure 41. Exemple d'implémentation Pollustock.

À Rodez, la municipalité a installé un filet capteur de déchets avant les orages diluviens pour évaluer son efficacité. En juin 2022, la France a connu des orages violents et dévastateurs dans de nombreux départements, provoquant d'importants déversements de déchets charriés par les rivières en crue. Juste avant ces orages, la mairie de Rodez a installé un filet Pollustock pour bloquer les déchets déversés par le réseau pluvial de la commune voisine de Sébazac-Concourès.

Le filet Pollustock utilisé était un filet anti macrodéchets HR1000 (Hydro Rescue) conçu pour retenir les gros déchets tels que le plastique, l'aluminium, le verre ou la mousse, tout en permettant le passage de l'eau. Les photographies publiées dans le journal Centre Presse Aveyron ont montré que le filet a résisté à la violence des orages et a retenu efficacement les déchets.

Avant l'installation du filet Pollustock, des clôtures grillagées servaient de barrage aux déchets. Cependant, compte tenu de la violence des orages, il est probable que ces clôtures n'auraient pas résisté. Le filet Pollustock a démontré sa résistance exceptionnelle et son efficacité pour retenir les déchets charriés par les fortes pluies. Une fois vidé, le filet est prêt à affronter de nouvelles arrivées potentielles de déchets.

Ce test à Rodez a donc confirmé que le filet Pollustock était une solution adaptée pour retenir les déchets avant qu'ils ne se propagent dans les rivières et atteignent les mers et les océans. Il a prouvé son efficacité en retenant les macrodéchets et en empêchant leur dispersion, contribuant ainsi à la protection de l'environnement marin.

F. IMPLÉMENTATION SOLUTION : FILETS POUR PIÉGER LES DÉCHETS AVANT LEUR ARRIVÉE EN MER - LA RÉUNION

En 2022, la CINOR (Communauté intercommunale du Nord de La Réunion) et trois communes de l'île de La Réunion ont lancé un projet expérimental en installant des filets anti-pollution à la sortie des réseaux d'eaux pluviales pour capturer les déchets solides avant qu'ils n'atteignent la mer. Quatre sites ont été sélectionnés pour l'installation des filets.

Il s'agit d'une première à La Réunion et ce projet est testé durant deux ans (jusqu'en 2024). Si les résultats sont concluants, la CINOR envisagera d'équiper d'autres points de sortie des réseaux d'eaux pluviales avec ces filets anti-pollution. Parallèlement, une réflexion sera menée sur la possibilité de créer une nouvelle filière locale pour la fabrication et l'entretien de ces filets, afin de générer des emplois supplémentaires. Des comités techniques et de pilotage ont été mis en place pour évaluer les résultats et prendre les décisions nécessaires tout au long de l'étude.

Figure 41. Exemple d'implémentation filet pour piéger les déchets.

G. IMPLÉMENTATION SOLUTION : FILETS ATTRAPE-DÉCHETS - KIWANA, AUSTRALIE ET MARSEILLE, FRANCE

Figure 43. Exemple d'implémentation filets attrape-déchets.

En 2018, la ville de Kwinana, en Australie, a mis en place des filets à la sortie des canalisations du réseau pluvial. Lorsqu'il pleut, les déchets charriés par l'eau de pluie se retrouvent piégés dans ces filets. Des camions munis de grues sont utilisés pour vider régulièrement les filets et trier les déchets collectés. Les images diffusées par la municipalité de Kwinana montrent que plusieurs centaines de kilogrammes de déchets flottants sont ainsi recueillis régulièrement, empêchant leur dispersion dans le milieu naturel.

Cette même solution a aussi été testée à Marseille, en France. Après avoir constaté le problème des déchets se retrouvant en mer, la ville de Marseille s'est intéressée à cette solution. Le SERAMM (Service d'assainissement Marseille Métropole), en collaboration avec la société Pollustock, a installé des filets anti-déchets à la sortie de certaines canalisations sur le littoral marseillais. Les filets utilisés sont des filets HR 1000 développés par Pollustock, qui sont fabriqués à partir d'une matière imputrescible à larges mailles. Ces filets sont conçus pour retenir de gros déchets tout en étant réutilisables et durables.

L'initiative suscite de l'intérêt et il est suggéré qu'elle pourrait être généralisée rapidement à l'ensemble du territoire de la métropole Aix-Marseille-Provence et, potentiellement, à d'autres zones du pourtour méditerranéen.

H. IMPLÉMENTATION SOLUTION: DOUBLE FILET - LYON, FRANCE

Green City Organisation a réalisé un test pilote de son système de double filet à Lyon, en France. Les filets ont été installés aux débouchés des réseaux d'eau pluviale dans certains quartiers urbains. L'objectif était de piéger les déchets urbains avant qu'ils ne se retrouvent dans les cours d'eau et, éventuellement, dans la mer. Le dispositif a été conçu pour intercepter les déchets tels que les plastiques, les mégots de cigarettes, les canettes et autres déchets couramment

retrouvés dans les rues des villes. Ce système de double filet permet de collecter les déchets tout en permettant à l'eau de pluie de s'écouler correctement à travers les canalisations. Une fois les filets remplis, les déchets sont retirés et triés afin d'être éliminés de manière appropriée.

Figure 44. Exemple d'implémentation double filet.

I. IMPLÉMENTATION SOLUTION: CYCLONE SEP - LYON, FRANCE

Le Cyclone Sep mis en œuvre à Lyon a été dimensionné pour traiter les pluies trentennales et un débit maximal de 600 litres par seconde. Sa mise en place a nécessité la réalisation d'une fouille de 6 m de long et de large pour 7 m de profondeur. Le fonctionnement du Cyclone Sep est basé sur le principe de la séparation tangentielle en continu et les effluents pluviaux s'écoulent tangentiellement vers la grille dont les orifices sont masqués par des petites lames.

Cette petite « astuce » brevetée favorise l'expulsion des matières en suspension hors des ouvertures de la grille. Les macrodéchets s'accumulent devant la grille, sans la colmater et les matières en suspension passent à travers les mailles de la grille et décantent au fond de l'appareil.

Le CycloneSep de Lyon Confluence permet d'obtenir un abattage des polluants et une qualité d'effluents, en sortie, nettement supérieure à un système conventionnel, tout en garantissant une maintenance relativement simple (avec un camion hydrocureur).

Figure 45. Le CycloneSep de l'intérieur.

4.4.5. CONCLUSIONS ET SUITES POSSIBLES

Prioritaires

- Mesures de terrain: quantification et caractérisation des déchets collectés par les balayeuses et dans les sacs de route.
- Implémentation des solutions test monitorées: filets à 3 points de rejet de dimensions intermédiaires et prévention du littering des mégots.
- Elargir à tout le canton.
- Mieux appréhender la variation temporelle (orages, poubelles qui débordent).
- Identification des zones le long de la rivière où des technologies de collecte des déchets peuvent être installées. Collecte d'informations sur les quantités et les types de déchets et identification des solutions à mettre en œuvre pour la collecte des déchets.

Secondaires

- Affinage modèle microplastique.
- Données Cortexia valider si notre approche modèle permet de se dispenser de trop de collecte de données.

Quatre meilleures solutions à mettre en place

Solutions	Points positifs	Points négatifs
Sacs de route (nettoyage plus fréquent)	Pas d' investissement de départ	Coût de maintenance et de personnel en augmentation
Filets aux points de rejet	 Faible investissement de départ Aspect visuel pour sensibiliser les citoyens 	 Gestion des charges hydrauliques difficile Laisse passer les petits plastiques (mégots) Augmentation de frais de gestion
The great bubble barrier	Taux de capture élevé	 Coûts d'investissement et frais de manutention Gestion de débris accumulés
Séparateur cyclonique	Système adaptatifTaux de capture élevé	Coût d'investissement et frais de gestion

5. BIBLIOGRAPHIE

40cean. (2023). Clean Ocean Technology. https://www.4ocean.com/pages/4ocean-x-poralubebot.

BAFU (2020). Déchets 2019 : Quantités produites et recyclées.

Bolla et al, 2018. Vehicle motion patterns for energy research: Comparison of annual mileage using vehicleand person-based data. In 18th Swiss Transport Research Conference (STRC 2018).

Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: a global evaluation of sources (Vol. 10). Gland, Switzerland: IUCN.

Boucher, J., Faure, F., Pompini, O., Plummer, Z., Wieser, O., & de Alencastro, L. F. (2019). (Micro) plastic fluxes and stocks in Lake Geneva basin. TrAC Trends in Analytical Chemistry, 112, 66-74.

Boucher, J., Billard, G., Simeone, E., & Sousa, J. (2020). The marine plastic footprint (No. REPORT_SBM). IUCN.

Canton Genève (2020). Inventaire 2020 - Déchets urbains communaux et état des collectes sélectives.

Canton Genève (2020). Annuaire Statistique des transports 2019.

Canton Genève (2022). Navigation - Capitainerie. https://www.ge.ch/navigation-capitainerie/places-amarrage-bateau-planche-voile.

Carnoux Progress. (2019). Astucieux : des filets attrape-déchets. https://carnouxprogres.wordpress.com/2019/09/21/astucieux-des-filets-attrape-dechets/.

CEPI (2020). Key statistics 2020. European pulp & paper industry.

Chemins de fer fédéraux suisses (SBB/CFF/FFS) (2022). Stations. https://reporting.sbb.ch/en/stations.

City population (2022). Genève. Canton in Switzerland. https://www.citypopulation.de/en/switzerland/admin/25 gen%C3%A8ve/.

Communauté industrie suisse de la cigarette (2006). Consommation tabac en suisse.

EBP (2020). Le plastique dans l'environnement Suisse. État des connaissances sur les impacts environnementaux des plastiques (micro- et macro-plastiques). Sur mandate de l'Office federal de l'environnement (OFEV).

Eunomia (2019). Calculation of Littering Rate for Glass Beverage Containers in Scotland.

GIZ, University of Leeds, Eawag-Sandec, Wasteaware (2020). User Manual: Waste Flow Diagram (WFD): A rapid assessment tool for mapping waste flows and quantifying plastic leakage. Version 1.0. February 2020.

Green City Organisation. (2023). Nous concevons des solutions de veille et de protection de la mer. https://www.greencityorganisation.fr.

Hann, S., Sherrington, C., Jamieson, O., Hickman, M., Kershaw, P., Bapasola, A., & Cole, G. (2018). Investigating options for reducing releases in the aquatic environment of microplastics emitted by (but not intentionally added in) products. Report for DG Environment of the European Commission, 335.

Haumpt et al. (2012). Waste flow diagram.

HUBER technology. (2023). HUBER Solutions for the Treatment of Municipal Wastewater for Reuse. https://www.huber-technology.com/solutions/water-reuse/municipal-wastewater.html.

ICF, Eunomia, European Commission - DG-Env. 2018. Assessment of measures to reduce marine litter from single use plastics.

ICOMIA (International Council of Marine Industry Associations). (2018). Recreational boating industry statistics 2017.

Jakob et al., 2017. Swiss medical weekly.

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771.

Kawecki, D. and al (2019). Polymer-Specific Modeling of the Environmental Emissions of Seven Commodity Plastics As Macro- and Microplastics. Environmental Science & Technology 2019 53 (16), 9664-9676. DOI: 10.1021/acs.est.9b02900.

La Gazette des communes. (2022). Un système de double filet collecte les déchets déversés en mer. https://www.lagazettedescommunes.com/793820/un-systeme-de-double-filet-collecte-les-dechets-deverses-en-mer/.

Lau, W. W., Shiran, Y., Bailey, R. M., Cook, E., Stuchtey, M. R., Koskella, J., ... & Palardy, J. E. (2020). Evaluating scenarios toward zero plastic pollution. Science, 369(6510), 1455-1461.

Le Moniteur. (2015). Un séparateur cyclonique innovant pour traiter les eaux pluviales du nouveau quartier Confluence à Lyon. https://www.lemoniteur.fr/article/un-separateur-cyclonique-innovant-pour-traiter-les-eaux-pluviales-du-nouveau-quartier-confluence-a-lyon.922239.

Le News (2017). Geneva has Switzerland's worst traffic, ranking ahead of New York. https://lenews.ch/2017/02/21/geneva-has-switzerlands-worst-traffic-ranking-ahead-of-new-york/.

Marine Litter solutions. (2018). River Catchment Project: River Litter Booms/Traps. https://www.marinelittersolutions.com/projects/river-catchment-project-river-litter-booms-traps/.

Meteoblue (2022). Observed historical climate & weather data for Geneva. https://www.meteoblue.com/en/weather/historyclimate/climateobserved/geneva switzerland 2 660646.

Noezone. (2022). Pollustock: cette entreprise installe des filets à la sortie des égouts pour endiguer la pollution des oceans. https://www.neozone.org/ecologie-planete/pollustock-cette-entreprise-installe-des-filets-a-la-sortie-des-egouts-pour-endiguer-la-pollution-des-oceans/.

Office fédéral de la statistique (OFS), 2010. La mobilité Suisse. Principaux résultats du Microrecensement mobilité et transports 2010.

Office fédéral de la statistique (OFS) (2020). Logements selon les cantons. https://www.bfs.admin.ch/bfs/fr/home/statistiques/construction-logement/logements.html.

Office fédéral de la statistique (OFS), « Effectif et évolution », sur www.bfs.admin.ch (consulté le 10 août 2021).

Paruta et al. (2022). Plastic paints the environment.

Pipelife. (2023). Wastewater treatment and cleaning system. https://www.pipelife.com/infrastructure/wastewater/ww-treatment-or-cleaning-systems.html.

Pollustock. (2023). Filet anti-déchets Hydro-Rescue. https://pollustock.com/filet-anti-déchets/.

Ran Marine. (2022). The Wastshark. Cleaninig plastic waste and unwanted biomass from our waters. https://www.ranmarine.io/products/wasteshark-3/.

ReMed Zéro Plastique. (2022). Projet expérimental à La Réunion: des filets pour piéger les déchets avant qu'ils n'arrivent en mer. https://www.remed-zero-plastique.org/articles/projet-experimental-r%C3%A9union-filets-dechets.

River Clean. (2022). Projects. Latest tech from ARC. https://riverclean.ethz.ch/projects/#V-Team.

River cleaning. (2023). River Cleaning System. https://rivercleaning.com/river-cleaning-system/.

Ryberg, M. W., Laurent, A., & Hauschild, M. (2018). Mapping of global plastics value chain and plastics losses to the environment: with a particular focus on marine environment.

Science Direct. (2006). Cyclone Separator.

https://www.sciencedirect.com/topics/engineering/cyclone-separator.

Sea Defence Solutions (SEADS). (2019), Blue barriers. https://www.seadefencesolutions.com/blue-barriers/.

Service Voirie -Ville Propre. Ville de Genève (2023). Action anti-mégots. https://www.geneve.ch/fr/themes/environnement-urbain-espaces-verts/nettoiement-espace-public/action-anti-megots.

Shiffman, S., & Paty, J. (2006). Smoking patterns and dependence: contrasting chippers and heavy smokers. Journal of abnormal psychology, 115(3), 509.

Shiffman, S., Dunbar, M. S., Li, X., Scholl, S. M., Tindle, H. A., Anderson, S. J., & Ferguson, S. G. (2014). Smoking patterns and stimulus control in intermittent and daily smokers. PloS one, 9(3), e89911.

State of NSW and Environment Protection Authority (2019). Cigarette Butt Litter Prevention Trial: Identifying effective strategies to reduce cigarette butt litter

Statistique Genève (2020). Le travail à travail, à temps partiel dans le canton de Genève: comparaison entre femmes et hommes.

The Great Bubble Barrier. (2023). Cleaning rivers from plastic pollution with bubbles. https://thegreatbubblebarrier.com.

The Guardian, 2022. Car tyres produce vastly more particle pollution than exhausts, tests show.

United Nations, 2019. Database on Household Size and Composition 2019.

USGS (2019). https://water.usgs.gov/edu/activity-howmuchrain-metric.html.

Ville de Genève, ASL (2018). Campagne - STOP MEGOTS - contre les mégots au sol en Ville de Genève. http://avpu.fr/wp-content/uploads/2018/11/Genève-presentation_avpu_campagne_megots-geneve_JMR_v2.pdf.

Water Witch (2022). Waterway Maintenance Solutions. https://waterwitch.com.

Weather Spark (2023). Climate and Average Weather Year Round in Genève. https://weatherspark.com/y/53457/Average-Weather-in-Genève-Switzerland-Year-Round.

Webler and Jakubowski (2022). Attitudes, Beliefs, and Behaviors about Cigarette-Butt Littering among College-Aged Adults in the United States.

World No Ashtray (2022). Q&A Cigarette Butt Litter. https://www.worldnoashtray.com/en/cigarette-butt-littering-information/.